Solveeit Logo

Question

Question: A stone tied to a string of length L is whirled in a vertical circle, with the other end of the stri...

A stone tied to a string of length L is whirled in a vertical circle, with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position and has a speed u. The magnitude of the change in its velocity as it reaches a position where the string is horizontal is

A

u22gL\sqrt{u^{2} - 2gL}

B

2gL\sqrt{2gL}

C

u2gL\sqrt{u^{2} - gL}

D

2(u2gL)\sqrt{2\left( u^{2} - gL \right)}

Answer

2(u2gL)\sqrt{2\left( u^{2} - gL \right)}

Explanation

Solution

12mu212mv2=mgl\frac{1}{2}mu^{2} - \frac{1}{2}mv^{2} = mgl

or v2 = u2 – 2gl

vi=ui^{\overrightarrow{v}}_{i} = u\widehat{i}

vf=j^u22gl{\overrightarrow{v}}_{f} = \widehat{j}\sqrt{u^{2} - 2gl}

change in velocity Δv=vfvi=j^u22glui^\Delta\overrightarrow{v} = {\overrightarrow{v}}_{f} - {\overrightarrow{v}}_{i} = \widehat{j}\sqrt{u^{2} - 2gl} - u\widehat{i}magnitude of Δv=(u22gl)+u2=2(u2gl)\Delta\overrightarrow{v} = \sqrt{\left( u^{2} - 2gl \right) + u^{2}} = \sqrt{2\left( u^{2} - gl \right)}.