Solveeit Logo

Question

Question: A stone of mass m tied to the end of a string revolves in a vertical circle of radius R. The net for...

A stone of mass m tied to the end of a string revolves in a vertical circle of radius R. The net forces at the lowest and highest points of the circle directed vertically downwards are:

Lowest Point Highest Point

A

mgT1\mathrm { mg } - \mathrm { T } _ { 1 } mg+T2\mathrm { mg } + \mathrm { T } _ { 2 }

B

mg+T1\mathrm { mg } + \mathrm { T } _ { 1 } mgT2\mathrm { mg } - \mathrm { T } _ { 2 }

C

mg+T1(mv12R)\mathrm { mg } + \mathrm { T } _ { 1 } - \left( \frac { \mathrm { mv } _ { 1 } ^ { 2 } } { \mathrm { R } } \right) mgT2+(mv22R)\mathrm { mg } - \mathrm { T } _ { 2 } + \left( \frac { \mathrm { mv } _ { 2 } ^ { 2 } } { \mathrm { R } } \right)

D

mgT1(mv12R)\mathrm { mg } - \mathrm { T } _ { 1 } - \left( \frac { \mathrm { mv } _ { 1 } { } ^ { 2 } } { \mathrm { R } } \right) mg+T2+(mv22R)\mathrm { mg } + \mathrm { T } _ { 2 } + \left( \frac { \mathrm { mv } _ { 2 } ^ { 2 } } { \mathrm { R } } \right)

T1\mathrm { T } _ { 1 } and v1\mathrm { v } _ { 1 } denote the tension and speed at the lowest point. T2\mathrm { T } _ { 2 } and v2v _ { 2 } denote corresponding values at the highest point :

Answer

mgT1\mathrm { mg } - \mathrm { T } _ { 1 } mg+T2\mathrm { mg } + \mathrm { T } _ { 2 }

Explanation

Solution

At the lowest point, mg acts downwards and T1T _ { 1 } upwards so that net force =mgT1= m g - T _ { 1 }

At the highest point, both mg and T2T _ { 2 } act downwards so that net force =mg+T2= m g + T _ { 2 }

Hence option (1) is correct