Solveeit Logo

Question

Question: A stone of mass 1000 g tied to a light string of length 10/3 m is whirling in a vertical circle. If ...

A stone of mass 1000 g tied to a light string of length 10/3 m is whirling in a vertical circle. If the ratio of the maximum tension to minimum tension is 4 and g = 10 ms-2, then speed of stone at the highest point of circle is

A

20 ms-1

B

10/√3 ms-1

C

5√3ms-1

D

10 ms-1

Answer

10 ms-1

Explanation

Solution

Tmax= mv12 L+mg\frac { \mathrm { mv } _ { 1 } ^ { 2 } } { \mathrm {~L} } + \mathrm { mg }

and Tmin = mvh2 Lmg\frac { \mathrm { mv } _ { \mathrm { h } } ^ { 2 } } { \mathrm {~L} } - \mathrm { mg }

Then

= v12+gLvh2gL\frac { v _ { 1 } ^ { 2 } + g L } { v _ { h } ^ { 2 } - g L } …………. (i)

Using v2 – u2 = 2aS, we get

vh2 - vl2 = - 2g(2L) = -4gL

or vl2 = vh2 + 4gL

Then from (i) TmaxTmin=vh2+4gL+gLv12gL\frac { \mathrm { T } _ { \max } } { \mathrm { T } _ { \min } } = \frac { \mathrm { v } _ { \mathrm { h } } ^ { 2 } + 4 \mathrm { gL } + \mathrm { gL } } { \mathrm { v } _ { 1 } ^ { 2 } - \mathrm { gL } } or

4 = vh2+5×10×103vh210×103\frac { \mathrm { v } _ { \mathrm { h } } ^ { 2 } + 5 \times 10 \times \frac { 10 } { 3 } } { \mathrm { v } _ { \mathrm { h } } ^ { 2 } - 10 \times \frac { 10 } { 3 } }

or 3vh2 = 300 = or vh = 10 ms-1