Solveeit Logo

Question

Physics Question on Circular motion

A stone of mass 0.25 kg tied to the end of a string is whirled round in a circle of radius 1.5 m with a speed of 40 rev./min in a horizontal plane. What is the tension in the string ? What is the maximum speed with which the stone can be whirled around if the string can withstand a maximum tension of 200 N ?

Answer

Mass of the stone, m = 0.25 kg
Radius of the circle, r = 1.5 m
Number of revolution per second, n = 4060\frac{40}{60}= 23\frac{2}{3} rps
Angular velocity, ω\omega = vr\frac{v}{r} =2π\pi𝑛 ………….(i)
The centripetal force for the stone is provided by the tension T, in the string, i.e.,
TT = FcentripetalF_{centripetal}
= mv2r\frac{mv^2}{r} = mrω2\omega^2 = mr(2πn)2mr(2\pi n)^2
= 0.25×1.5×(2×3.14×23)20.25\times 1.5\times \bigg(2\times 3.14\times \frac{2}{3}\bigg)^2
= 6.57 N
Maximum tension in the string, TmaxT_{max} = 200 N
TmaxT_{max} = mvmax2r\frac{mv^2_{max}}{r}

\therefore vmaxv_{max} = Tmax×rm\sqrt{\frac{T_{max} \times r}{m}}

= 200×1.50.25\sqrt{\frac{200\times 1.5}{0.25}}

= 1200\sqrt{1200}
= 34.64 m/s
Therefore, the maximum speed of the stone is 34.64 m/s.