Solveeit Logo

Question

Question: A stone is projected from horizontal ground with minimum initial velocity $v_0$ m/s such that the st...

A stone is projected from horizontal ground with minimum initial velocity v0v_0 m/s such that the stone is able to cross a sloped roof ABAB as shown below. Find the value of v0v_0.

Answer

14.56

Explanation

Solution

The problem asks for the minimum initial velocity v0v_0 required for a stone projected from the horizontal ground to clear a sloped roof AB. The roof has point A at height 10 m and point B at height 5 m. The length of the roof AB is 25 m.

  1. Determine the geometry of the roof:

    Let the horizontal distance between points A and B be Δx\Delta x. The vertical height difference between A and B is Δy=10 m5 m=5 m\Delta y = 10 \text{ m} - 5 \text{ m} = 5 \text{ m}. Using the Pythagorean theorem for the length of the roof: L2=(Δx)2+(Δy)2L^2 = (\Delta x)^2 + (\Delta y)^2 252=(Δx)2+5225^2 = (\Delta x)^2 + 5^2 625=(Δx)2+25625 = (\Delta x)^2 + 25 (Δx)2=600(\Delta x)^2 = 600 Δx=600=106 m\Delta x = \sqrt{600} = 10\sqrt{6} \text{ m}.

  2. Formulate the problem using the trajectory equation:

    Let the stone be projected from the origin (0,0) with initial velocity v0v_0 at an angle θ\theta with the horizontal. The equation of the trajectory is: y=xtanθgx22v02cos2θy = x \tan\theta - \frac{g x^2}{2 v_0^2 \cos^2\theta} This can be rewritten as: y=xtanθgx22v02(1+tan2θ)y = x \tan\theta - \frac{g x^2}{2 v_0^2} (1 + \tan^2\theta) Rearranging to express v02v_0^2: v02=gx2(1+tan2θ)2(xtanθy)v_0^2 = \frac{g x^2 (1 + \tan^2\theta)}{2 (x \tan\theta - y)}

  3. Apply the condition for minimum velocity to clear a line segment:

    For the stone to clear the roof AB with minimum initial velocity, the trajectory must be tangent to the line segment AB. This means the parabola of the projectile path touches the line segment AB at exactly one point. Let the coordinates of point A be (x1,y1)(x_1, y_1) and point B be (x2,y2)(x_2, y_2). We have y1=10y_1 = 10 m and y2=5y_2 = 5 m. Let x1x_1 be the horizontal distance from the origin to point A. Then x2=x1+Δx=x1+106x_2 = x_1 + \Delta x = x_1 + 10\sqrt{6}.

    Consider the equation of trajectory: y=xtanθgx22v02(1+tan2θ)y = x \tan\theta - \frac{g x^2}{2 v_0^2}(1+\tan^2\theta). Let P=tanθP = \tan\theta. y=xPgx22v02(1+P2)y = xP - \frac{g x^2}{2 v_0^2}(1+P^2) 2v02y=2v02xPgx2(1+P2)2v_0^2 y = 2v_0^2 xP - gx^2(1+P^2) gx2P22v02xP+(gx2+2v02y)=0gx^2 P^2 - 2v_0^2 xP + (gx^2 + 2v_0^2 y) = 0

    For a given (x,y)(x,y), this quadratic in PP has real solutions for PP (i.e., real θ\theta) if the discriminant is non-negative: D=(2v02x)24(gx2)(gx2+2v02y)0D = (-2v_0^2 x)^2 - 4(gx^2)(gx^2 + 2v_0^2 y) \ge 0 4v04x24g2x48gv02x2y04v_0^4 x^2 - 4g^2 x^4 - 8g v_0^2 x^2 y \ge 0 Divide by 4x24x^2 (assuming x0x \neq 0): v04g2x22gv02y0v_0^4 - g^2 x^2 - 2g v_0^2 y \ge 0 v042gyv02g2x20v_0^4 - 2gy v_0^2 - g^2 x^2 \ge 0 The minimum v02v_0^2 to reach a point (x,y)(x,y) occurs when the discriminant is zero: v02=2gy±4g2y2+4g2x22=gy±gx2+y2v_0^2 = \frac{2gy \pm \sqrt{4g^2 y^2 + 4g^2 x^2}}{2} = gy \pm g\sqrt{x^2+y^2}. Since v02>0v_0^2 > 0, we take the positive root: v02=g(y+x2+y2)v_0^2 = g(y + \sqrt{x^2+y^2}).

    The problem requires the trajectory to clear the entire line segment AB. This means all points (x,y)(x,y) on the line segment must be reachable. The minimum velocity v0v_0 is such that the trajectory is tangent to the line segment AB. Let the line segment be represented by y=mx+cy = mx+c. The equation for the minimum velocity v0v_0 for a projectile launched from the origin to just touch a line y=mx+cy = mx+c is: v02=gc12mtanθ+m2v_0^2 = \frac{g c}{1 - 2m \tan\theta + m^2} where tanθ=m+m21+c/H1\tan\theta = \frac{m + \sqrt{m^2-1+c/H}}{1}

    Let's use the concept of the parabola of safety. The minimum velocity to clear the line segment occurs when the line segment is tangent to the parabola of safety. The equation of the parabola of safety (envelope of trajectories) is y=v022ggx22v02y = \frac{v_0^2}{2g} - \frac{g x^2}{2v_0^2}. Let the line segment AB be y=mx+cy = mx+c. We need to find v0v_0 such that mx+c=v022ggx22v02mx+c = \frac{v_0^2}{2g} - \frac{g x^2}{2v_0^2} has exactly one solution for xx. gx22v02+mx+(cv022g)=0\frac{g x^2}{2v_0^2} + mx + (c - \frac{v_0^2}{2g}) = 0. For a unique solution, the discriminant must be zero: m24(g2v02)(cv022g)=0m^2 - 4 \left(\frac{g}{2v_0^2}\right) \left(c - \frac{v_0^2}{2g}\right) = 0 m22gv02(cv022g)=0m^2 - \frac{2g}{v_0^2} (c - \frac{v_0^2}{2g}) = 0 m22gcv02+1=0m^2 - \frac{2gc}{v_0^2} + 1 = 0 v02(m2+1)=2gcv_0^2 (m^2+1) = 2gc v02=2gcm2+1v_0^2 = \frac{2gc}{m^2+1}

    Now we need to find mm and cc for the line segment AB. m=126m = \frac{-1}{2\sqrt{6}}. The equation of the line AB is y10=126(xxA)y - 10 = \frac{-1}{2\sqrt{6}}(x - x_A). y=126x+(xA26+10)y = \frac{-1}{2\sqrt{6}}x + \left(\frac{x_A}{2\sqrt{6}} + 10\right). So, c=xA26+10c = \frac{x_A}{2\sqrt{6}} + 10. We need to minimize v02=2g(xA26+10)(126)2+1=2g(xA26+10)124+1=2g(xA26+10)2524v_0^2 = \frac{2g(\frac{x_A}{2\sqrt{6}} + 10)}{(\frac{-1}{2\sqrt{6}})^2 + 1} = \frac{2g(\frac{x_A}{2\sqrt{6}} + 10)}{\frac{1}{24} + 1} = \frac{2g(\frac{x_A}{2\sqrt{6}} + 10)}{\frac{25}{24}}. v02=48g25(xA26+10)v_0^2 = \frac{48g}{25} \left(\frac{x_A}{2\sqrt{6}} + 10\right). To minimize v02v_0^2, we must minimize xAx_A. The line segment AB extends from x=xAx=x_A to x=xA+106x=x_A+10\sqrt{6}. The point of tangency (xt,yt)(x_t, y_t) must lie on the line segment AB, i.e., xAxtxA+106x_A \le x_t \le x_A+10\sqrt{6}. The x-coordinate of the point of tangency is given by: xt=mv02g=mg2gcm2+1=2mcm2+1x_t = - \frac{m v_0^2}{g} = - \frac{m}{g} \frac{2gc}{m^2+1} = - \frac{2mc}{m^2+1}. Substitute m=126m = \frac{-1}{2\sqrt{6}} and c=xA26+10c = \frac{x_A}{2\sqrt{6}} + 10: xt=2(126)(xA26+10)(126)2+1=16(xA26+10)124+1=xA12+1062524x_t = - \frac{2(\frac{-1}{2\sqrt{6}})(\frac{x_A}{2\sqrt{6}} + 10)}{(\frac{-1}{2\sqrt{6}})^2 + 1} = \frac{\frac{1}{\sqrt{6}}(\frac{x_A}{2\sqrt{6}} + 10)}{\frac{1}{24} + 1} = \frac{\frac{x_A}{12} + \frac{10}{\sqrt{6}}}{\frac{25}{24}} xt=2425(xA12+106)=2xA25+240256=2xA25+48625x_t = \frac{24}{25} \left(\frac{x_A}{12} + \frac{10}{\sqrt{6}}\right) = \frac{2x_A}{25} + \frac{240}{25\sqrt{6}} = \frac{2x_A}{25} + \frac{48\sqrt{6}}{25}.

    We need xAxtxA+106x_A \le x_t \le x_A + 10\sqrt{6}. For minimum v0v_0, the tangent point must be the leftmost point A, i.e., xt=xAx_t = x_A. This means the trajectory is tangent to the line AB at point A. So, xA=2xA25+48625x_A = \frac{2x_A}{25} + \frac{48\sqrt{6}}{25}. 25xA=2xA+48625x_A = 2x_A + 48\sqrt{6} 23xA=48623x_A = 48\sqrt{6} xA=48623x_A = \frac{48\sqrt{6}}{23}.

    Now substitute this xAx_A back into the v02v_0^2 equation: v02=48g25(4862326+10)=48g25(4846+10)=48g25(2423+10)v_0^2 = \frac{48g}{25} \left(\frac{\frac{48\sqrt{6}}{23}}{2\sqrt{6}} + 10\right) = \frac{48g}{25} \left(\frac{48}{46} + 10\right) = \frac{48g}{25} \left(\frac{24}{23} + 10\right) v02=48g25(24+23023)=48g25(25423)v_0^2 = \frac{48g}{25} \left(\frac{24 + 230}{23}\right) = \frac{48g}{25} \left(\frac{254}{23}\right) v02=12192g575v_0^2 = \frac{12192g}{575}.

    Let's use g=10 m/s2g=10 \text{ m/s}^2. v02=12192×10575=121920575=24384115v_0^2 = \frac{12192 \times 10}{575} = \frac{121920}{575} = \frac{24384}{115}. v0=24384115211.914.55 m/sv_0 = \sqrt{\frac{24384}{115}} \approx \sqrt{211.9} \approx 14.55 \text{ m/s}.

    This value seems reasonable. Let's recheck the assumption that xt=xAx_t=x_A. This is true if the minimum of v0v_0 occurs when the tangent point is at the start of the line segment.

Final calculation: v02=48g25(xA26+10)v_0^2 = \frac{48g}{25} \left(\frac{x_A}{2\sqrt{6}} + 10\right) xA=48623x_A = \frac{48\sqrt{6}}{23} v02=48g25(48623×26+10)=48g25(2423+10)v_0^2 = \frac{48g}{25} \left(\frac{48\sqrt{6}}{23 \times 2\sqrt{6}} + 10\right) = \frac{48g}{25} \left(\frac{24}{23} + 10\right) v02=48g25(24+23023)=48g25(25423)v_0^2 = \frac{48g}{25} \left(\frac{24 + 230}{23}\right) = \frac{48g}{25} \left(\frac{254}{23}\right) v02=12192g575v_0^2 = \frac{12192g}{575} Using g=9.8 m/s2g=9.8 \text{ m/s}^2: v02=12192×9.8575=119481.6575207.808v_0^2 = \frac{12192 \times 9.8}{575} = \frac{119481.6}{575} \approx 207.808 v0=207.80814.415 m/sv_0 = \sqrt{207.808} \approx 14.415 \text{ m/s}.

Using g=10 m/s2g=10 \text{ m/s}^2: v02=12192×10575=121920575=24384115211.99v_0^2 = \frac{12192 \times 10}{575} = \frac{121920}{575} = \frac{24384}{115} \approx 211.99 v0=211.9914.56 m/sv_0 = \sqrt{211.99} \approx 14.56 \text{ m/s}.

Let's verify the condition xAxtxA+106x_A \le x_t \le x_A+10\sqrt{6}. We set xt=xAx_t = x_A. So xA=4862348×2.44923117.55235.11 mx_A = \frac{48\sqrt{6}}{23} \approx \frac{48 \times 2.449}{23} \approx \frac{117.55}{23} \approx 5.11 \text{ m}. The horizontal extent of the roof is 10610×2.449=24.49 m10\sqrt{6} \approx 10 \times 2.449 = 24.49 \text{ m}. So xA+1065.11+24.49=29.6 mx_A+10\sqrt{6} \approx 5.11 + 24.49 = 29.6 \text{ m}. Since xt=xAx_t = x_A, the tangency point is at the beginning of the roof. This means the trajectory just touches point A. This is a valid condition for minimum velocity.