Solveeit Logo

Question

Physics Question on Motion in a plane

A stone is dropped from a height hh simultaneously, another stone is thrown up from the ground which reaches a height 4h4h . The two stones cross each other after time

A

h8g\sqrt{\frac{h}{8g}}

B

8gh\sqrt{8gh}

C

2gh\sqrt{2gh}

D

(h2g)\sqrt{\left( \frac{h}{2g} \right)}

Answer

h8g\sqrt{\frac{h}{8g}}

Explanation

Solution

For first stone v=0v=0 and For second stone v22g=4h\frac{v^{2}}{2 g}=4 h u2=8gh\Rightarrow u^{2}=8 g h u=8gh\therefore u=\sqrt{8 g h} Now, h1=12gt2h_{1}=\frac{1}{2} g t^{2} h2=8ght12gt2h_{2}=\sqrt{8 g h t}-\frac{1}{2} g t^{2} where, t=t= time to cross each other. h1+h2=h\therefore h_{1}+h_{2}=h 12gt2+8ght12gt2=h\Rightarrow \frac{1}{2} g t^{2}+\sqrt{8 g h t}-\frac{1}{2} g t^{2}=h t=h8gh\Rightarrow t=\frac{h}{\sqrt{8 g h}} =(h8g)=\sqrt{\left(\frac{h}{8 g}\right)}