Solveeit Logo

Question

Question: A stone falls freely under gravity. It covers distance \( {{h}_{1}} \) \( {{h}_{2}} \) and \( {{h}_{...

A stone falls freely under gravity. It covers distance h1{{h}_{1}} h2{{h}_{2}} and h3{{h}_{3}} in the first 5 seconds, the next 5 seconds and the next 5 seconds respectively. The relation between h1{{h}_{1}} , h2{{h}_{2}} and h3{{h}_{3}} is:
(A) h1=2h2=3h3{{h}_{1}}=2{{h}_{2}}=3{{h}_{3}}
(B) h1=h23=h35{{h}_{1}}=\dfrac{{{h}_{2}}}{3}=\dfrac{{{h}_{3}}}{5}
(C) h2=3h1 and h3=3h2{{h}_{2}}=3{{h}_{1}}\text{ }and\text{ }{{h}_{3}}=3{{h}_{2}}
(D) h1=h2=h3{{h}_{1}}={{h}_{2}}={{h}_{3}}

Explanation

Solution

We can use position time relation which is given by
S=ut+12at2S=ut+\dfrac{1}{2}a{{t}^{2}}
Here, S is distance travelled in time t,
u is the initial velocity,
a is the acceleration and t is time taken.
In case of free fall, if downward direction is taken positive and object is released from rest, then
u=0, a=g=10m/s2, S=hu=0,\text{ }a=g=10m/{{s}^{2}},\text{ }S=h
In case of free fall, if downward direction is taken negative and object is released from set, then
u=0, a=g=10m/s2, S=hu=0,\text{ }a=-g=-10m/{{s}^{2}},\text{ }S=-h .

Complete step by step solution
We have, given
Stone is falling freely under gravity.
It means, if we will take downward as negative
Then, a=ga=-g
S=h1S=-{{h}_{1}}
Case I: Where h1{{h}_{1}} is the distance covered in first seconds,
Here, stone is falling freely hence take initial velocity as zero.
u=0u=0 , t=5s is given
Then use distance/position-time relation
S=ut+12at2S=ut+\dfrac{1}{2}a{{t}^{2}}
Here, a=ga=-g , means acceleration due to gravity.
Put all the above values:

h1=252g{{h}_{1}}=\dfrac{25}{2}g ; h1=0(5)+12(g)(5)2-{{h}_{1}}=0\left( 5 \right)+\dfrac{1}{2}\left( -g \right){{\left( 5 \right)}^{2}}
h1=12×g(25)-{{h}_{1}}=-\dfrac{1}{2}\times g{{\left( 25 \right)}^{{}}}
h1=252g{{h}_{1}}=\dfrac{25}{2}g ----------(2)
Now in Case II:
Distance travelled by stone in next 5 seconds,
Now total distance covered will be, S=(h1+h2)S=-\left( {{h}_{1}}+{{h}_{2}} \right) [negative sign shows just direction of measurement]
And total time taken, t=5+5=10s
Put the above values in eq, (1)
(h1+h2)=0(10)+12(g)(10)2-\left( {{h}_{1}}+{{h}_{2}} \right)=0\left( 10 \right)+\dfrac{1}{2}\left( -g \right){{\left( 10 \right)}^{2}}
(h1+h2)=12g(100)=1002g\left( {{h}_{1}}+{{h}_{2}} \right)=\dfrac{1}{2}g\left( 100 \right)=\dfrac{100}{2}g ---------(3)
Case III:
Distance travelled by stone in next 5 seconds,
Total distance covered S=(h1+h2+h3)S=-\left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)
Total time taken t=5+5+5=15st=5+5+5=15s
Put the values in eq. (1)
(h1+h2+h3)=12g(15)2-\left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)=-\dfrac{1}{2}g{{\left( 15 \right)}^{2}}
(h1+h2+h3)=2252g\left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)=\dfrac{225}{2}g ------- (4)
Solve eq. (2) and (3)
(h1+h2)h1=1002g252g\left( {{h}_{1}}+{{h}_{2}} \right)-{{h}_{1}}=\dfrac{100}{2}g-\dfrac{25}{2}g
h2=752g{{h}_{2}}=\dfrac{75}{2}g -------- (5)
Solve eq. (3) and (4),
(h1+h2+h3)(h1+h2)=2252g1002g\left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)-\left( {{h}_{1}}+{{h}_{2}} \right)=\dfrac{225}{2}g-\dfrac{100}{2}g
h3=1252g{{h}_{3}}=\dfrac{125}{2}g --------- (6)
Write eq. (5) and (6) in terms of
h2=252×3gh2=3h1{{h}_{2}}=\dfrac{25}{2}\times 3g\to {{h}_{2}}=3{{h}_{1}} ---------- (7)
h3=252×5gh3=5h1{{h}_{3}}=\dfrac{25}{2}\times 5g\to {{h}_{3}}=5{{h}_{1}} ----------- (8)
From eq. (7) and (8),
h1=h23=h35{{h}_{1}}={{\dfrac{{{h}_{2}}}{3}}_{{}}}=\dfrac{{{h}_{3}}}{5} This is required result.
Therefore option (B) is the correct answer.

Note
We can also, use direct formula, Distance travelled in the second by,
Dn=u+a2(2n1){{D}_{n}}=u+\dfrac{a}{2}\left( 2n-1 \right)
Here, n is nth second, above question n is given as 5s.
Using the above formula we will get the same answer.