Solveeit Logo

Question

Question: A stick of length \(20\) units is to be divided into \(n\) parts. So that the product of the length ...

A stick of length 2020 units is to be divided into nn parts. So that the product of the length of the parts is greater than unity. The maximum possible of nn is
a)20 b)19 c)18 d)21  a)\,20 \\\ b)\,19 \\\ c)\,18 \\\ d)\,21 \\\

Explanation

Solution

Let a 2020 unit length be divided into nn parts thus length of each part may be x1,x2,x3,........,xn{x_1},{x_2},{x_3},........,{x_n}
So x1+x2+x3+........+xn=20{x_1} + {x_2} + {x_3} + ........ + {x_n} = 20 and given
x1x2x3........xn>1{x_1}{x_2}{x_3}........{x_n} > 1
And it is known that AM\geqslantGM
Arithmetic mean is greater than Geometric mean.

Complete step-by-step answer:
Here it is given a stick of length 2020 units and it is divided into nn parts.
Now it is not given nn equal parts.
Divided into nn parts with unequal length
Let the length of each part may be
x1,x2,x3,........,xn{x_1},{x_2},{x_3},........,{x_n}
So x1+x2+x3+........+xn=20{x_1} + {x_2} + {x_3} + ........ + {x_n} = 20
And it is given in the question the product of length of parts greater than unity.
So x1x2x3........xn>1{x_1}{x_2}{x_3}........{x_n} > 1
And it is known that AM\geqslantGM
Arithmetic mean is always greater than geometric mean.
Let us find the arithmetic means of x1,x2,x3,........,xn{x_1},{x_2},{x_3},........,{x_n}
AM=x1+x2+x3+........+xnn = \dfrac{{{x_1} + {x_2} + {x_3} + ........ + {x_n}}}{n}
Now we can write geometric means of x1,x2,x3,........,xn{x_1},{x_2},{x_3},........,{x_n}
GM=(x1x2x3........xn)1n = {\left( {{x_1}{x_2}{x_3}........{x_n}} \right)^{\dfrac{1}{n}}}
And we know x1+x2+x3+........+xn=20{x_1} + {x_2} + {x_3} + ........ + {x_n} = 20 and x1x2x3........xn>1{x_1}{x_2}{x_3}........{x_n} > 1
And we know AM\geqslantGM
x1+x2+x3+........+xnn(x1x2x3........xn)1n\dfrac{{{x_1} + {x_2} + {x_3} + ........ + {x_n}}}{n} \geqslant {\left( {{x_1}{x_2}{x_3}........{x_n}} \right)^{\dfrac{1}{n}}}
As x1+x2+x3+........+xn=20{x_1} + {x_2} + {x_3} + ........ + {x_n} = 20
20n(x1x2x3........xn)1n\dfrac{{20}}{n} \geqslant {\left( {{x_1}{x_2}{x_3}........{x_n}} \right)^{\dfrac{1}{n}}}
And we know that x1x2x3........xn>1{x_1}{x_2}{x_3}........{x_n} > 1, and now taking nth{n^{th}} power both side
(20n)n(x1x2x3........xn){\left( {\dfrac{{20}}{n}} \right)^n} \geqslant \left( {{x_1}{x_2}{x_3}........{x_n}} \right)
And x1x2x3........xn>1{x_1}{x_2}{x_3}........{x_n} > 1, so
(20n)n(1){\left( {\dfrac{{20}}{n}} \right)^n} \geqslant \left( 1 \right)
So (20n)\left( {\dfrac{{20}}{n}} \right) must be greater than 11
(20n)>(1)\left( {\dfrac{{20}}{n}} \right) > \left( 1 \right). So, 20>n20 > n
So maximum number of n=19n = 19
As nn can be integer only.
So the correct answer is Option C.

Note: You can apply AM\geqslantGM anywhere we know if (a,b)(a,b) are two elements then AM=a+b2 = \dfrac{{a + b}}{2} and GM=ab= \sqrt {ab}
So always AM\geqslantGM
Equality sign is possible when a=ba = b
AM==GM i.e. a=ba = b