Solveeit Logo

Question

Question: A steel wire of length 4.5 m and cross-sectional area \(3 \times 10^{- 5}\text{ }\text{m}^{2}\) stre...

A steel wire of length 4.5 m and cross-sectional area 3×105 m23 \times 10^{- 5}\text{ }\text{m}^{2} stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area4×105 m24 \times 10^{- 5}\text{ }\text{m}^{2} of under a given load. The ratio of the Young’s modulus of steel to that of copper is

A

1.3

B

1.5

C

1.7

D

1.9

Answer

1.7

Explanation

Solution

: For copper wire, LC=3.5mL_{C} = 3.5m

AC=4×105m2A_{C} = 4 \times 10^{- 5}m^{2}

For steel wire,

LS=4.5m,AS=3×105m2L_{S} = 4.5m,A_{S} = 3 \times 10^{- 5}m^{2}

As Young’s modulus, Y=(F/A)ΔL/LY = \frac{(F/A)}{\Delta L/L}

As applied force F and extension ΔL\Delta Lare same for steel and copper wires

FΔL=YSASLS=YCACLC\therefore\frac{F}{\Delta L} = \frac{Y_{S}A_{S}}{L_{S}} = \frac{Y_{C}A_{C}}{L_{C}}

Where the subscripts C and S refers to copper and steel respectively.

YSYC=LSLC×ACAS=(4.5m)×(4×105m2)(3.5m)×(3×105m2)=1.7\therefore\frac{Y_{S}}{Y_{C}} = \frac{L_{S}}{L_{C}} \times \frac{A_{C}}{A_{S}} = \frac{(4.5m) \times (4 \times 10^{- 5}m^{2})}{(3.5m) \times (3 \times 10^{- 5}m^{2})} = 1.7