Solveeit Logo

Question

Question: A steel wire of length \[1{\text{ m}}\], mass \[0.1{\text{ kg}}\] and uniform cross sectional area \...

A steel wire of length 1 m1{\text{ m}}, mass 0.1 kg0.1{\text{ kg}} and uniform cross sectional area 106 m2{10^{ - 6}}{\text{ }}{{\text{m}}^2} is rigidly fixed at both ends. The temperature of the wire is lowered by 20 C20{{\text{ }}^ \circ }C. If transverse waves are set up by plucking the string in the middle, calculate the frequency of the fundamental mode of vibration. Young’s modulus of steel is 2 × 1011 N m22{\text{ }} \times {\text{ 1}}{{\text{0}}^{11}}{\text{ N }}{{\text{m}}^{ - 2}} and coefficient of linear expansion of steel is 1.2 × 105 C11.2{\text{ }} \times {\text{ 1}}{{\text{0}}^{ - 5}}{\text{ }}{{\text{C}}^{ - 1}}.

Explanation

Solution

Since the coefficient of linear expansion of steel is given, we will find the change in length of steel wire when temperature is reduced by 20 C20{{\text{ }}^ \circ }C. Then we will find the stress produced in the wire when it is being plucked. With the help of velocity of the transmitted wave we will find the frequency of the transmitted wave.

Formula Used:
Stress == Young’s modulus ×\times strain
v = Tmv{\text{ = }}\sqrt {\dfrac{T}{m}}
Here, TT= Tension in the wire and mm=mass.

Complete step by step answer:
Let us assume a steel wire of length ll , mass mm and area of cross sectional AA is rigidly fixed at both ends. The temperature is now reduced to Δθ\Delta \theta , then the change in length of wire Δl\Delta l can be found by using the formula as,

α = Δll × Δθ\alpha {\text{ = }}\dfrac{{\Delta l}}{{l{\text{ }} \times {\text{ }}\Delta \theta }}
Here α\alpha is known as the coefficient of linear expansion. Hence according to question,
l = 1 ml{\text{ = 1 m}}
Δθ = 20 C\Rightarrow \Delta \theta {\text{ = 20}}{{\text{ }}^ \circ }C
α = 1.2 × 105 C1\Rightarrow \alpha {\text{ = }}1.2{\text{ }} \times {\text{ 1}}{{\text{0}}^{ - 5}}{\text{ }}{{\text{C}}^{ - 1}}
On substituting the given values the change in length of wire will be:
α = Δll × Δθ\alpha {\text{ = }}\dfrac{{\Delta l}}{{l{\text{ }} \times {\text{ }}\Delta \theta }}
1.2 × 105 = Δl× 20\Rightarrow {\text{1}}{\text{.2 }} \times {\text{ 1}}{{\text{0}}^{ - 5}}{\text{ = }}\dfrac{{\Delta l}}{{{\text{1 }} \times {\text{ 20}}}}
Δl = 1.2 × 105 × 20 \Rightarrow \Delta l{\text{ = 1}}{\text{.2 }} \times {\text{ 1}}{{\text{0}}^{ - 5}}{\text{ }} \times {\text{ 20 }}
Δl = 24 × 105 m\Rightarrow \Delta l{\text{ = 24 }} \times {\text{ 1}}{{\text{0}}^{ - 5}}{\text{ m}}

Hence we will calculate the stress produced in the wire when it is plucked. It can be calculated as:
Stress == Young’s modulus ×\times strain
We know that strain produced in wire is Δll\dfrac{{\Delta l}}{l} which is equal to Δl\Delta l because length of wire is 1 m1{\text{ m}}.
Hence, stress == Young’s modulus ×\times Δl\Delta l
It is given that Young’s modulus of steel is 2 × 1011 N m22{\text{ }} \times {\text{ 1}}{{\text{0}}^{11}}{\text{ N }}{{\text{m}}^{ - 2}} and we have calculated Δl = 24 × 105 m\Delta l{\text{ = 24 }} \times {\text{ 1}}{{\text{0}}^{ - 5}}{\text{ m}}. Therefore,
Stress = 2 × 1011 × 24 × 105 = {\text{ }}2{\text{ }} \times {\text{ 1}}{{\text{0}}^{11}}{\text{ }} \times {\text{ 24 }} \times {\text{ 1}}{{\text{0}}^{ - 5}}
Stress = 48 × 106 N m1 = {\text{ 48 }} \times {\text{ 1}}{{\text{0}}^6}{\text{ N }}{{\text{m}}^{ - 1}}

On plucking the steel wire a tension is developed in the wire which is equal to the product of area of cross section of wire and stress produced in wire. Therefore,
Tension == Area of cross section ×\times Stress
Tension = 106 × 48 × 106 N m = {\text{ 1}}{{\text{0}}^6}{\text{ }} \times {\text{ 48 }} \times {\text{ 1}}{{\text{0}}^6}{\text{ N m}}
Tension = 48 × 1012 N m = {\text{ 48 }} \times {\text{ 1}}{{\text{0}}^{12}}{\text{ N m}}
The wave velocity vv of the wave produced in the wave can be found as:
v = Tmv{\text{ = }}\sqrt {\dfrac{T}{m}}
Also frequency of wave nn can be founded as,
n = 12l Tmn{\text{ = }}\dfrac{1}{{2l}}{\text{ }}\sqrt {\dfrac{T}{m}}
On putting the values we get the frequency of wave as,
n = 12 × 1 48 × 10120.1n{\text{ = }}\dfrac{1}{{2{\text{ }} \times {\text{ 1}}}}{\text{ }}\sqrt {\dfrac{{48{\text{ }} \times {\text{ 1}}{{\text{0}}^{12}}}}{{0.1}}}
n = 12 48 × 1013\Rightarrow n{\text{ = }}\dfrac{1}{2}{\text{ }}\sqrt {48{\text{ }} \times {\text{ 1}}{{\text{0}}^{13}}}
n = 11 Hz\therefore n{\text{ = 11 Hz}}

Thus the frequency of transverse waves is 11 Hz11{\text{ Hz}}.

Note: Tension is produced in the wire since both its ends are fixed. If somehow one end is not fixed then tension will not be produced within the wire. Young’s modulus is the elasticity range of any material. The frequency we get is an approximate value and its S.I unit is Hertz. Whenever the temperature is reduced or increased the original length of wire will be changed.