Solveeit Logo

Question

Question: A steel rod of length 1 m and area of cross-section is heated from 0 °C to 200 °C, without being all...

A steel rod of length 1 m and area of cross-section is heated from 0 °C to 200 °C, without being allowed to extend or bend. The tension produced in the rod is

(Given : Young’s modulus of steel =2×1011 N m2= 2 \times 10^{\text{11}}\text{ N }\text{m}^{- 2} and coefficient of linear expansion of steel =105 C1)= 10^{- 5}\ {^\circ}C^{- 1})

A

× 103 N\text{4 } \times \text{ 1}\text{0}^{3}\text{ N}

B

× 104 N\text{4 } \times \text{ 1}\text{0}^{4}\text{ N}

C

× 105 N\text{4 } \times \text{ 1}\text{0}^{5}\text{ N}

D

× 106 N\text{4 } \times \text{ 1}\text{0}^{6}\text{ N}

Answer

× 104 N\text{4 } \times \text{ 1}\text{0}^{4}\text{ N}

Explanation

Solution

: Let ΔL\Delta Lbe increase in the length of the rod due to increase in temperature of the rod. Then

ΔL=LαΔT\Delta L = L\alpha\Delta T

Where α\alphais the coefficient of the linear expansion, ΔT\Delta Tis the rise in temperature and L is the length of the rod.

ΔLL=αΔT\therefore\frac{\Delta L}{L} = \alpha\Delta T

Let the compressive tension of the rod be T and A be cross-section area. Then

Y=T/AΔL/LY = \frac{T/A}{\Delta L/L}

T=YΔLLA=Y×αΔT×A\therefore T = Y\frac{\Delta L}{L}A = Y \times \alpha\Delta T \times A [Using (i)]

Here, Y=2×1011Nm2Y = 2 \times 10^{11}Nm^{- 2}

α=1050C1\alpha = 1{0^{- 5}}^{0}C^{- 1}

ΔT=2000C00C=2000C\Delta T = 200^{0}C - 0^{0}C = 200^{0}C

L=1m,A=1cm2=1×104m2L = 1m,A = 1cm^{2} = 1 \times 10^{- 4}m^{2}

T=2×1011Nm2×1050C1×2000C×1×104m2=4×104N\therefore T = 2 \times 10^{11}Nm^{- 2} \times 1{0^{- 5}}^{0}C^{- 1} \times 200^{0}C \times 1 \times 10^{- 4}m^{2} = 4 \times 10^{4}N