Solveeit Logo

Question

Question: A steel ring of radius r and cross-section area ‘A’ is fitted on to a wooden disc of radius \(R ( R ...

A steel ring of radius r and cross-section area ‘A’ is fitted on to a wooden disc of radius R(R>r)R ( R > r ). If Young's modulus be E, then the force with which the steel ring is expanded is

A

AERrA E \frac { R } { r }

B

AE(Rrr)A E \left( \frac { R - r } { r } \right)

C

EA(RrA)\frac { E } { A } \left( \frac { R - r } { A } \right)

D

ErAR\frac { E r } { A R }

Answer

AE(Rrr)A E \left( \frac { R - r } { r } \right)

Explanation

Solution

Initial length (circumference) of the ring = 2πr

Final length (circumference) of the ring = 2πR

Change in length = 2πR – 2πr.

strain = change in length  original length = \frac { \text { change in length } } { \text { original length } } =2π(Rr)2πr= \frac { 2 \pi ( R - r ) } { 2 \pi r } =Rrr= \frac { R - r } { r }

Now Young's modulus E=F/Al/L=F/A(Rr)/rE = \frac { F / A } { l / L } = \frac { F / A } { ( R - r ) / r }

F=AE(Rrr)F = A E \left( \frac { R - r } { r } \right)