Solveeit Logo

Question

Question: A steel cable with a radius of \(1.5cm\) supports a chairlift at a ski area. If the maximum stress i...

A steel cable with a radius of 1.5cm1.5cm supports a chairlift at a ski area. If the maximum stress is not to exceed 108Nm2{10^8}N{m^{ - 2}}, what is the maximum load the cable can support?

Explanation

Solution

By using the formula of maximum stress and formula of area of cross-section we can calculate the value of maximum force.
The formula for maximum stress is given by, Maximum stress=maximum forcemaximum area{\text{Maximum stress}} = \dfrac{{{\text{maximum force}}}}{{{\text{maximum area}}}}.
Also the area of the cross section is given by A=πr2{\text{A}} = \pi {r^2}, where A{\text{A}} is the area of the cross section and rr is the radius.

Complete step by step solution:
Maximum load that the cable can support can be calculated by the formula given by,Maximum stress=maximum forcemaximum area maximum force=maximum stressmaximum area  {\text{Maximum stress}} = \dfrac{{{\text{maximum force}}}}{{{\text{maximum area}}}} \\\ {\text{maximum force}} = {\text{maximum stress}} \cdot {\text{maximum area}} \\\
Step 1:
As given that radius of cable is1.5cm1.5cm. Let us convert the unit of radius from cmcm tomm. As 1m=100cm1m = 100cm therefore the radius of the cable is,
r=1.5cm r=1.5100m r=1.5×102m  r = 1.5cm \\\ r = \dfrac{{1.5}}{{100}}m \\\ r = 1.5 \times {10^{ - 2}}m \\\
Step 2:
Therefore the area of cross section would be, calculated by
A=πr2{\text{A}} = \pi {r^2}
Replace the value of r=1.5×102mr = 1.5 \times {10^{ - 2}}m in above equation,
A=πr2 A=π(1.5×102)2 A=π×(0.015)2 A=7.069×104m2  {\text{A}} = \pi {r^2} \\\ {\text{A}} = \pi {\left( {1.5 \times {{10}^{ - 2}}} \right)^2} \\\ {\text{A}} = \pi \times {\left( {{\text{0}}{\text{.015}}} \right)^2} \\\ {\text{A}} = {\text{7}}{\text{.069}} \times {\text{1}}{{\text{0}}^{ - 4}}{m^2} \\\
Step 3:
The maximum stress on the cable is not to exceed108Nm2{10^8}N{m^{ - 2}} and the area of cross section is A=0.047m2{\text{A}} = {\text{0}}{\text{.047}}{m^2}, therefore
In the equation,
maximum force=maximum stressmaximum area{\text{maximum force}} = {\text{maximum stress}} \cdot {\text{maximum area}}
Replace the value of maximum stress{\text{maximum stress}} as 108Nm2{10^8}N{m^{ - 2}} and maximum area{\text{maximum area}} as A=0.047m2{\text{A}} = {\text{0}}{\text{.047}}{m^2}
maximum force=maximum stress×maximum area maximum force=108×7.069×104 maximum force=7.069×104N  {\text{maximum force}} = {\text{maximum stress}} \times {\text{maximum area}} \\\ {\text{maximum force}} = {10^8} \times {\text{7}}{\text{.069}} \times {\text{1}}{{\text{0}}^{ - 4}} \\\ {\text{maximum force}} = {\text{7}}{\text{.069}} \times {\text{1}}{{\text{0}}^4}N \\\
So, the maximum force the cable with radius r=1.5cmr = 1.5cm and maximum stress capacity of 108Nm2{10^8}N{m^{ - 2}} experiences is equals to 7.069×104N{\text{7}}{\text{.069}} \times {\text{1}}{{\text{0}}^4}N.

Note:
While calculating maximum force the students should remember the unit of maximum stress and the area of cross-section should be similar. The value of maximum stress is taken as 108Nm2{10^8}N{m^{ - 2}} because in the problem it is given that cable cannot take the value of stress above than the given stress.