Solveeit Logo

Question

Question: A steady current \(I\) goes through a wire loop \(PQR\) having the shape of a right angle triangle w...

A steady current II goes through a wire loop PQRPQR having the shape of a right angle triangle with PQ=3xPQ = 3x, PR=4xPR = 4x and QR=5xQR = 5x. If the magnitude of the magnetic field at PP due to this loop is k(μ0T48π)k\left( {\dfrac{{{\mu _0}T}}{{48\pi }}} \right), find the value of kk.

Explanation

Solution

Hint: The wire loop PQRPQR forms a right-angled triangle. When the current flows through the loop it generates a magnetic field around it. When the current flows through the loop PRPR and PQPQ, the magnetic field at the point PP is zero. While passing through loop QRQR, it generates the magnetic field at point PP. Firstly, the right angled triangle PQRPQR is split up into two right angled triangles PQDPQD and PDRPDR. And by using the area formula the value of PDPD is obtained. With the help of Pythagoras theorem, the value of QDQD is obtained. And the value of DRDR is calculated by subtracting QDQD from QRQR. Substituting all the values in the magnitude of the magnetic field, the values of k will be derived.

Useful formula:
Area of the triangle = 12bh\dfrac{1}{2}bh
Where, bb is the breadth of triangle and hh is the height of the triangle.

Magnitude of magnetic field, B=μ0I4πr(sinθ1+sinθ2)B = \dfrac{{{\mu _0}I}}{{4\pi r}}\left( {\sin {\theta _1} + \sin {\theta _2}} \right)
Where, μ0{\mu _0} is the permeability of free space, II is the current flowing normal to the point, rr is the perpendicular distance between the point and current flowing and θ1{\theta _1}, θ2{\theta _2} are referred in the diagram given above.
Given data:
PQ=3xPQ = 3x
PR=4xPR = 4x
QR=5xQR = 5x
The magnitude of magnetic field, B=k(μ0I48πx)B = k\left( {\dfrac{{{\mu _0}I}}{{48\pi x}}} \right)

Step by step solution:

By the properties of area of triangle,
12×PD×QR=12×PR×PQ\dfrac{1}{2} \times PD \times QR = \dfrac{1}{2} \times PR \times PQ
Substitute the above values, we get
12×PD×5x=12×4x×3x PD=22(5x)×4x×3x PD=12x5  \dfrac{1}{2} \times PD \times 5x = \dfrac{1}{2} \times 4x \times 3x \\\ PD = \dfrac{2}{{2\left( {5x} \right)}} \times 4x \times 3x \\\ PD = \dfrac{{12x}}{5} \\\

By Pythagoras theorem,
QD=(PQ)2(PD)2QD = \sqrt {{{\left( {PQ} \right)}^2} - {{\left( {PD} \right)}^2}}
Substitute the given values, we get
QD=(3x)2(12x5)2 QD=(9x2)144x225 QD=x×914425 QD=x×(225144)25 QD=x×8125 QD=x×95 QD=9x5  QD = \sqrt {{{\left( {3x} \right)}^2} - {{\left( {\dfrac{{12x}}{5}} \right)}^2}} \\\ QD = \sqrt {\left( {9{x^2}} \right) - \dfrac{{144{x^2}}}{{25}}} \\\ QD = x \times \sqrt {9 - \dfrac{{144}}{{25}}} \\\ QD = x \times \sqrt {\dfrac{{\left( {225 - 144} \right)}}{{25}}} \\\ QD = x \times \sqrt {\dfrac{{81}}{{25}}} \\\ QD = x \times \dfrac{9}{5} \\\ QD = \dfrac{{9x}}{5} \\\
Hence, DR=QRQDDR = QR - QD
DR=5x9x5 DR=(25x9x)5 DR=16x5  DR = 5x - \dfrac{{9x}}{5} \\\ DR = \dfrac{{\left( {25x - 9x} \right)}}{5} \\\ DR = \dfrac{{16x}}{5} \\\

When the current passes through PQPQ and , the value of magnetic field at PP will be zero. Because the current passes through the point itself. And when the current flows through QRQR, the magnetic field at PP will be
B=μ0I4π×PD(sinθ1+sinθ2) B=μ0I4π×PD(QDQP+DRPR)  B = \dfrac{{{\mu _0}I}}{{4\pi \times PD}}\left( {\sin {\theta _1} + \sin {\theta _2}} \right) \\\ B = \dfrac{{{\mu _0}I}}{{4\pi \times PD}}\left( {\dfrac{{QD}}{{QP}} + \dfrac{{DR}}{{PR}}} \right) \\\
Substitute the given values, we get
B=μ0I4π×(12x5)((9x5)3x+(16x5)4x) B=μ0I×54π×12x(35+45) B=μ0I×54π×12x(75) B=μ0I×748πx B=7(μ0I48πx)  B = \dfrac{{{\mu _0}I}}{{4\pi \times \left( {\dfrac{{12x}}{5}} \right)}}\left( {\dfrac{{\left( {\dfrac{{9x}}{5}} \right)}}{{3x}} + \dfrac{{\left( {\dfrac{{16x}}{5}} \right)}}{{4x}}} \right) \\\ B = \dfrac{{{\mu _0}I \times 5}}{{4\pi \times 12x}}\left( {\dfrac{3}{5} + \dfrac{4}{5}} \right) \\\ B = \dfrac{{{\mu _0}I \times 5}}{{4\pi \times 12x}}\left( {\dfrac{7}{5}} \right) \\\ B = \dfrac{{{\mu _0}I \times 7}}{{48\pi x}} \\\ B = 7\left( {\dfrac{{{\mu _0}I}}{{48\pi x}}} \right) \\\
By comparing the given value of BB and the above derived value of BB, we get k=7k = 7

Note: Since, the perpendicular distance between the point and the current flow will be zero. Thus, the magnetic field at a point will be zero when the current flows through the same point. The area of the right-angled triangle can be obtained by two different ways shown above. The magnetic field induced will decrease when the perpendicular distance tends to increase.