Solveeit Logo

Question

Question: A steady current \[I\] goes through a wire loop PQR having a shape of right angle triangle with PQ=3...

A steady current II goes through a wire loop PQR having a shape of right angle triangle with PQ=3x, PR=4x and QR=5x. If the magnitude of magnetic field at P due to this loop is k(μ0I48πx)k\left( {\dfrac{{{\mu _0}I}}{{48\pi x}}} \right). Find the value of kk.
A. 99
B. 55
C. 1010
D. 77

Explanation

Solution

Determine the values of the altitude of the right angle triangle and the distances of the hypotenuse divided by the altitude. Determine the values of sine of angles made by the altitude from a vertex of the triangle with the other two sides of the right angle triangle. Substitute these values in the formula for magnetic field for a right angel triangle.

Formulae used:
The area of a triangle is
Area of triangle=12×base×height{\text{Area of triangle}} = \dfrac{1}{2} \times {\text{base}} \times {\text{height}} …… (1)
The area of a right angled triangle is
Area of triangle=12×altitude×hypotenuse{\text{Area of triangle}} = \dfrac{1}{2} \times {\text{altitude}} \times {\text{hypotenuse}} …… (2)
The magnetic field at a point P on the vertex of the right angle triangle is given by
The area of a triangle is
B=μ0I4π(altitude of triangle)(sinθ1+sinθ2)B = \dfrac{{{\mu _0}I}}{{4\pi \left( {{\text{altitude of triangle}}} \right)}}\left( {\sin {\theta _1} + \sin {\theta _2}} \right) …… (3)
Here, is the permeability of free space, is the current and are the angles made by the altitude of the triangle from one of the vertices with the two sides of the right angle triangle.

Complete step by step answer:
We have given that a steady current II goes through a wire loop PQR having a shape of right angle triangle with PQ=3x, PR=4x and QR=5x. Let us first draw the diagram for the wire loop POR.

In the above diagram, PD is the altitude of the right angled triangle. The angle made by the altitude of this triangle with the sides PQ and PR of the right angle triangle are θ1{\theta _1} and θ2{\theta _2} respectively.

The area of the triangle PQR is given by using equations (1) and (2).
Area of triangle=12×PR×PQ{\text{Area of triangle}} = \dfrac{1}{2} \times {\text{PR}} \times {\text{PQ}}
Substitute 4x4x for PR{\text{PR}} and 3x3x for PQ{\text{PQ}} in the above equation.
Area of triangle=12×4x×3x{\text{Area of triangle}} = \dfrac{1}{2} \times 4x \times 3x
Area of triangle=6x2\Rightarrow {\text{Area of triangle}} = 6{x^2}
And
Area of triangle=12×PD×QR{\text{Area of triangle}} = \dfrac{1}{2} \times {\text{PD}} \times {\text{QR}}
Substitute 5x5x for QR{\text{QR}} in the above equation.
Area of triangle=12×PD×5x{\text{Area of triangle}} = \dfrac{1}{2} \times {\text{PD}} \times 5x
Equate these two areas of the triangles.
12×PD×5x=6x2\dfrac{1}{2} \times {\text{PD}} \times 5x = 6{x^2}
PD=12x5\Rightarrow {\text{PD}} = \dfrac{{12x}}{5}

Now we can determine the length of QD using Pythagoras theorem.
PQ2=PD2+QD2{\text{P}}{{\text{Q}}^{\text{2}}} = {\text{P}}{{\text{D}}^{\text{2}}} + {\text{Q}}{{\text{D}}^{\text{2}}}
Substitute 3x3x for PQ{\text{PQ}} and 12x5\dfrac{{12x}}{5} for PD{\text{PD}} in the above equation.
(3x)2=(12x5)2+QD2{\left( {3x} \right)^{\text{2}}} = {\left( {\dfrac{{12x}}{5}} \right)^{\text{2}}} + {\text{Q}}{{\text{D}}^{\text{2}}}
QD2=9x2144x225\Rightarrow {\text{Q}}{{\text{D}}^{\text{2}}} = 9{x^2} - \dfrac{{144{x^2}}}{{25}}
QD=9x5\Rightarrow {\text{QD}} = \dfrac{{9x}}{5}

The length of the side QR is the sum of the lengths QD and DR.
QR=QD+DR{\text{QR}} = {\text{QD}} + {\text{DR}}
Substitute 5x5x for QR{\text{QR}} and 9x5\dfrac{{9x}}{5} for QD{\text{QD}} in the above equation.
5x=9x5+DR5x = \dfrac{{9x}}{5} + {\text{DR}}
DR=16x5\Rightarrow {\text{DR}} = \dfrac{{16x}}{5}

The sine of an angle in a right angle triangle is the ratio of the side opposite to that of the angle and hypotenuse.
Hence, the value of angles sinθ1{\text{sin}}{\theta _1} and sinθ2{\text{sin}}{\theta _2} is
sinθ1=QDPQ{\text{sin}}{\theta _1} = \dfrac{{{\text{QD}}}}{{{\text{PQ}}}}
sinθ1=9x53x\Rightarrow {\text{sin}}{\theta _1} = \dfrac{{\dfrac{{9x}}{5}}}{{3x}}
sinθ1=915\Rightarrow {\text{sin}}{\theta _1} = \dfrac{9}{{15}}
And
sinθ2=DRPR{\text{sin}}{\theta _2} = \dfrac{{{\text{DR}}}}{{{\text{PR}}}}
sinθ2=16x54x\Rightarrow {\text{sin}}{\theta _2} = \dfrac{{\dfrac{{16x}}{5}}}{{4x}}
sinθ2=1620\Rightarrow {\text{sin}}{\theta _2} = \dfrac{{16}}{{20}}

Let us determine the value of the magnetic field.
Substitute PD{\text{PD}} for altitude of triangle{\text{altitude of triangle}} in equation (3).
B=μ0I4π(PD)(sinθ1+sinθ2)B = \dfrac{{{\mu _0}I}}{{4\pi \left( {{\text{PD}}} \right)}}\left( {\sin {\theta _1} + \sin {\theta _2}} \right)
Substitute 12x5\dfrac{{12x}}{5} for PD{\text{PD}}, 915\dfrac{9}{{15}} for sinθ1\sin {\theta _1} and 1620\dfrac{{16}}{{20}} for sinθ2\sin {\theta _2} in the above equation.
B=μ0I4π(12x5)(915+1620)B = \dfrac{{{\mu _0}I}}{{4\pi \left( {\dfrac{{12x}}{5}} \right)}}\left( {\dfrac{9}{{15}} + \dfrac{{16}}{{20}}} \right)
B=5μ0I48πx(180+240300)\Rightarrow B = \dfrac{{5{\mu _0}I}}{{48\pi x}}\left( {\dfrac{{180 + 240}}{{300}}} \right)
B=μ0I48πx(42060)\Rightarrow B = \dfrac{{{\mu _0}I}}{{48\pi x}}\left( {\dfrac{{420}}{{60}}} \right)
B=7(μ0I48πx)\therefore B = 7\left( {\dfrac{{{\mu _0}I}}{{48\pi x}}} \right)
From the above equation, we can conclude that the value of k is 7.

Hence, the correct option is D.

Note: The same question can be solved by another method. If one considers the angles made by the remaining angles of the right angle triangle other than the right angle then the formula for magnetic field used will be the same. The only thing we need to change is to take the cosine of these angels instead of sine of the angles.