Solveeit Logo

Question

Question: A steady current i flows in a small square loop of wire of side L in a horizontal plane. The loop is...

A steady current i flows in a small square loop of wire of side L in a horizontal plane. The loop is now folded about its middle such that half of it lies in a vertical plane. Let μ1\overrightarrow { \mu _ { 1 } } and μ2\overrightarrow { \mu _ { 2 } } respectively denote the magnetic moments due to the current loop before and after folding. Then

A

μ2=0\overrightarrow { \mu _ { 2 } } = 0

B

μ1\overrightarrow { \mu _ { 1 } } andμ2\overrightarrow { \mu _ { 2 } }are in the same direction

C

μ1μ2=2\frac { \left| \overrightarrow { \mu _ { 1 } } \right| } { \left| \overrightarrow { \mu _ { 2 } } \right| } = \sqrt { 2 }

D

μ1μ2=(12)\frac { \left| \overrightarrow { \mu _ { 1 } } \right| } { \left| \overrightarrow { \mu _ { 2 } } \right| } = \left( \frac { 1 } { \sqrt { 2 } } \right)

Answer

μ1μ2=2\frac { \left| \overrightarrow { \mu _ { 1 } } \right| } { \left| \overrightarrow { \mu _ { 2 } } \right| } = \sqrt { 2 }

Explanation

Solution

L\longleftarrow L μ1=iL2\longleftarrow \mu _ { 1 } = i L ^ { 2 }

M = magnetic moment due to each part

=i(L2)×L=iL22=μ12= i \left( \frac { L } { 2 } \right) \times L = \frac { i L ^ { 2 } } { 2 } = \frac { \mu _ { 1 } } { 2 }

μ2=M2=μ12×2=μ12\mu _ { 2 } = M \sqrt { 2 } = \frac { \mu _ { 1 } } { 2 } \times \sqrt { 2 } = \frac { \mu _ { 1 } } { \sqrt { 2 } }Initially Finally