Solveeit Logo

Question

Physics Question on work, energy and power

A stationary particle explodes into two particles of masses m1m_1 and m2m_2 which move in opposite directions with velocities v1v_1 and v2v_2. The ratio of their kinetic energies E1/E2E_1 /E_2 is

A

11

B

m1v2/m2v1m_{1}v_{2}/m_{2}v_{1}

C

m2/m1m_{2}/m_{1}

D

m1/m2m_{1}/m_{2}

Answer

m2/m1m_{2}/m_{1}

Explanation

Solution

For a exploding body, linear momentum is conserved.
From conservation of linear momentum
Pinitial =Pfinal P_{\text {initial }}=P_{\text {final }}
0=m1v1m2v20=m_{1} v_{1}-m_{2} v_{2}
or m1v1=m2v2m_{1} v_{1}=m_{2} v_{2}
or v1v2=m2m1 \frac{v_{1}}{v_{2}}=\frac{m_{2}}{m_{1}}\,\,\,...(i)
Thus, ratio of kinetic energies
E1E2=12m1v1212m2v22=m1m2×(m2m1)2\frac{E_{1}}{E_{2}}=\frac{\frac{1}{2} m_{1} v_{1}^{2}}{\frac{1}{2} m_{2} v_{2}^{2}}=\frac{m_{1}}{m_{2}} \times\left(\frac{m_{2}}{m_{1}}\right)^{2}
=m2m1=\frac{m_{2}}{m_{1}}