Solveeit Logo

Question

Physics Question on Kinetic Energy

A stationary particle breaks into two parts of masses mAm_A and mBm_B, which move with velocities vAv_A and vBv_B, respectively. The ratio of their kinetic energies (KB:KAK_B : K_A) is:

A

vB:vAv_B : v_A

B

mB:mAm_B : m_A

C

mBvB:mAvAm_B v_B : m_A v_A

D

1:11 : 1

Answer

vB:vAv_B : v_A

Explanation

Solution

Initial momentum is zero:

PA=PB    mAvA=mBvB.P_A = P_B \implies m_A v_A = m_B v_B.

The kinetic energy ratio is:

KBKA=12mBvB212mAvA2.\frac{K_B}{K_A} = \frac{\frac{1}{2} m_B v_B^2}{\frac{1}{2} m_A v_A^2}.
KBKA=mBvB2mAvA2=vBvA.\frac{K_B}{K_A} = \frac{m_B v_B^2}{m_A v_A^2} = \frac{v_B}{v_A}.

Final Answer: v B : vA.