Solveeit Logo

Question

Physics Question on Bohr's model of hydrogen atom

A stationary hydrogen atom deexcites from first excited state to ground state. Find recoil speed of hydrogen atom up to nearest integer value.
(mass of hydrogen atom = 1.8×10271.8 \times 10^{-27} kgkg)

Answer

|ΔE_0| = (-13.6 \left\\{1-\frac{1}{4}\right\\} )ev
ΔE=10.2 ev|ΔE| = 10.2\ ev
λ=1240010.2×1010 mλ=\frac{12400}{10.2} × 10^{-10}\ m
ρ=hλρ=\frac{h}{λ}
=6.63×1034×10.212400×1010=\frac{6.63 × 10^{-34} × 10.2}{12400 × 10^{-10}}
mv=hλ\because mv=\frac{h}{λ}
1.8×1027\therefore 1.8 × 10^{-27}
v=6.63×10.2×103412400×1010v = \frac{6.63×10.2×10^{-34}}{12400 × 10^{-10}}
v=6.63×10.212400×1.8×103v =\frac{6.63 × 10.2}{12400×1.8} × 10^3
=6.63×102124×1.8=\frac{6.63 × 102}{124 × 1.8}
=3.023 m/s= 3.02 ≈ 3\ m/s
\therefore , Recoil speed of hydrogen atom is 3 m/s