Solveeit Logo

Question

Physics Question on Nuclear physics

A star has 100% helium composition. It starts to convert three 4^4He into one 12^{12}C via the triple alpha process as 4He+4He+4He12C+Q.^4\text{He} + ^4\text{He} + ^4\text{He} \rightarrow ^{12}\text{C} + Q. The mass of the star is 2.0×10322.0 \times 10^{32} kg and it generates energy at the rate of 5.808×10305.808 \times 10^{30} W. The rate of converting these 4^4He to 12^{12}C is n×1042n \times 10^{42} s1^{-1}, where nn is ______.
[Take, mass of 4^4He = 4.0026 u, mass of 12^{12}C = 12 u]

Answer

The given triple alpha process is:

4He+4He+4He12C+Q^4\text{He} + ^4\text{He} + ^4\text{He} \rightarrow ^{12}\text{C} + Q

The power generated by the star is given as:

Power=NtQ\text{Power} = \frac{N}{t} Q,

where Nt\frac{N}{t} is the number of reactions per second.

The energy released per reaction (QQ) is:

Q=(3mHemC)c2Q = (3m_{\text{He}} - m_{\text{C}})c^2

Substituting the given values:

Q=(3×4.002612)×(3×108)2Q = (3 \times 4.0026 - 12) \times (3 \times 10^8)^2

Q=7.266MeVQ = 7.266 \, \text{MeV}

Convert QQ into joules:

Q=7.266×1.602×1013JQ = 7.266 \times 1.602 \times 10^{-13} \, \text{J}

Q=1.163×1012JQ = 1.163 \times 10^{-12} \, \text{J}

Rearranging the power equation:

Nt=PowerQ\frac{N}{t} = \frac{\text{Power}}{Q}

Substitute the values:

Nt=5.808×10301.163×1012\frac{N}{t} = \frac{5.808 \times 10^{30}}{1.163 \times 10^{-12}}

Simplify:

Nt=5×1042s1\frac{N}{t} = 5 \times 10^{42} \, \text{s}^{-1}

Final Answer: The rate of conversion of 4He^4\text{He} to 12C^{12}\text{C} is:

n=5(where Nt=n×1042s1)n = 5 \, (\text{where } \frac{N}{t} = n \times 10^{42} \, \text{s}^{-1}).