Solveeit Logo

Question

Question: A staircase has \(5\) steps each \(10cm\) high and \(10cm\) wide. What is the minimum horizontal vel...

A staircase has 55 steps each 10cm10cm high and 10cm10cm wide. What is the minimum horizontal velocity to be given to the ball so that it hits directly the lowest plane from the top of the staircase? (g=10m s2)(g = 10m{\text{ }}{s^{ - 2}})
A. 2m12{m^{ - 1}}
B. 1m11{m^{ - 1}}
C. 2ms1\sqrt 2 m{s^{ - 1}}
D. 12ms1\dfrac{1}{2}m{s^{ - 1}}

Explanation

Solution

In order to answer this question, first we convert the given height and width from cm to mcm{\text{ to m}} then we would use equation of motion i.e. h=ut+12at2h = ut + \dfrac{1}{2}a{t^2} along the horizontal axis to get the velocity of projection to hit the lowest floor.

Formula used:
h=ut+12at2h = ut + \dfrac{1}{2}a{t^2}
Where,
hh is the height,
uu is the initial velocity,
aa is the acceleration and
tt is the time.

Complete step by step solution:

According to question,
Height of each step=10cm=0.1mHeight{\text{ }}of{\text{ }}each{\text{ }}step = 10cm = 0.1m
Width of each step=10cm=0.1mWidth{\text{ }}of{\text{ }}each{\text{ }}step = 10cm = 0.1m
The ball needs to just cross the point AA of the step number 11 in order to hit the lowest floor.
So,
Total horizontal distance till A = 0.1×4 = 0.4m{\text{Total horizontal distance till A = 0}}{\text{.1}} \times {\text{4 = 0}}{\text{.4m}}
Total vertical distance required=0.1×4=0.4m{\text{Total vertical distance required}} = 0.1 \times 4 = 0.4m
And in doing so,
let time taken=tlet{\text{ }}time{\text{ }}taken = t
Or in moving from B to A{\text{B to A}}
First calculating along y-axis
We have,
S=0.4m (displacement along y - axis) u=0m s1 (initial velocity along y - axis) v=? (final velocity along y - axis) t=? (time taken to move from B to A) a=10m s2 (acceleration due to gravity)  S = 0.4m{\text{ (displacement along y - axis)}} \\\ u = 0m{\text{ }}{s^{ - 1}}{\text{ (initial velocity along y - axis)}} \\\ v = ?{\text{ (final velocity along y - axis)}} \\\ t = ?{\text{ (time taken to move from B to A)}} \\\ a = 10m{\text{ }}{s^{ - 2}}{\text{ (acceleration due to gravity)}} \\\
Now, using equation of motion to find the time i.e.
h=ut+12at2h = ut + \dfrac{1}{2}a{t^2}
S=ut+12at2 0.4=0+12(10)t2 t2=+0.8=0.08100 t=±2210  \Rightarrow S = ut + \dfrac{1}{2}a{t^2} \\\ \Rightarrow 0.4 = 0 + \dfrac{1}{2}( - 10){t^2} \\\ \Rightarrow {t^2} = + 0.8 = \dfrac{{0.08}}{{100}} \\\ \Rightarrow t = \pm \dfrac{{2\sqrt 2 }}{{10}} \\\
\because Time can not be negative
So, t=2210t = \dfrac{{2\sqrt 2 }}{{10}}
Now, solving along horizontal axis,
S=0.4m (displacement along x - axis) u=v (initial velocity along x - axis i.e. projection velocity) T=2210(time taken which is eventually t) V = v (final velocity which is equal to initial velocitya = 0) a=0 (acceleration along x axis)  S = 0.4m{\text{ (displacement along x - axis)}} \\\ u = v{\text{ (initial velocity along x - axis i}}{\text{.e}}{\text{. projection velocity)}} \\\ T = \dfrac{{2\sqrt 2 }}{{10}}{\text{(time taken which is eventually t)}} \\\ {\text{V = v (final velocity which is equal to initial velocity}}\because {\text{a = 0)}} \\\ a = 0{\text{ (acceleration along x axis)}} \\\
So, using equation of motion,
h=ut+12at2 S=ut+12at2 +0.4=v2210+12(0)t2 422=v v=2  h = ut + \dfrac{1}{2}a{t^2} \\\ \Rightarrow S = ut + \dfrac{1}{2}a{t^2} \\\ \Rightarrow + 0.4 = v\dfrac{{2\sqrt 2 }}{{10}} + \dfrac{1}{2}(0){t^2} \\\ \Rightarrow \dfrac{4}{{2\sqrt 2 }} = v \\\ \Rightarrow v = \sqrt 2 \\\
So, we get v=2v = \sqrt 2 which is the required horizontal velocity i.e. the projection velocity.
Hence, Option C is correct.

Additional information:
Projectile motion is the motion of an object thrown or projected into the air, subject to only the acceleration of gravity. The object is called a projectile, and its path is called its trajectory. Projectile motion is a two-dimensional projectile motion.

Note:
To solve this problem we must have knowledge of equations of motion. It defines or gives the relation of a particular system with regards to motion as a time function.
Fact: Here we got the value of time both negative as well as positive,
\because As per our knowledge time can not be negative,
\therefore The positive part was considered.