Solveeit Logo

Question

Question: A square wire frame of side \( a \) is placed \( b \) away from a long straight conductor carrying c...

A square wire frame of side aa is placed bb away from a long straight conductor carrying current II . The frame has resistance RR and self-inductance LL . The frame is rotated by 180180^\circ about OOOO' as shown in figure. Find the electric charge flown through the frame.

(A) 2μ0ia22πRb\dfrac{{2{\mu _0}i{a^2}}}{{2\pi Rb}}
(B) μ0i2πRlogeb+aba\dfrac{{{\mu _0}i}}{{2\pi R}}{\log _e}\dfrac{{b + a}}{{b - a}}
(C) μ0ia2πRlogeb+aba\dfrac{{{\mu _0}ia}}{{2\pi R}}{\log _e}\dfrac{{b + a}}{{b - a}}
(D) None of these

Explanation

Solution

We know that the faraday's law stated that a changing magnetic field produces an electric field. So charges that are free to move will cause an EMF and a current. Thus the magnetic statement of Faraday’s Law is that EMF induced in a loop is proportional to rate of change in flux.
E=iR=ΔϕΔtE = iR = \dfrac{{\Delta \phi }}{{\Delta t}}
We also know that the current in a conductor is nothing but, charge flowing in it per unit time i=qti = \dfrac{q}{t}
We also know that, ϕ=B.dA\phi = \int {B.dA} .

Formulas used: We will be using the formula E=iR=ΔϕΔtE = iR = \dfrac{{\Delta \phi }}{{\Delta t}} where EE is the EMF induced by current ii , flowing through a conductor with resistance RR and Δϕ\Delta \phi is the change in flux of the body, while Δt\Delta t is the change in time intervals. We will also be using, ϕ=B.dA\phi = \int {B.dA} where BB is the magnetic field intensity produced due to the flux and dAdA is the change in area.

Complete Step by Step Solution
We know that by faraday’s Laws of electromagnetism, E=iR=ΔϕΔtE = iR = \dfrac{{\Delta \phi }}{{\Delta t}} we also know that q=itq = it , Thus the charge induced on a body can be given by, QindΔtR=ΔϕΔt\dfrac{{{Q_{ind}}}}{{\Delta t}}R = \dfrac{{\Delta \phi }}{{\Delta t}} .
Qind=ΔϕR\Rightarrow {Q_{ind}} = \dfrac{{\Delta \phi }}{R} .

Consider a small strip of width dxdx at the distance of xx from the current carrying wire.So let us find the change in flux by finding the final flux and initial flux.
dϕ=B.dAd\phi = B.dA
Integrating the expression to find the initial and final fluxes of the thin strip
dϕ=B.dA\int {d\phi } = \int {B.dA}
We know that dϕ=ϕ\int {d\phi } = \phi and B=μ0I2πxB = \dfrac{{{\mu _0}I}}{{2\pi x}} . Also the are of the strip will be A=a×dxA = a \times dx .
Substituting the values be get,
ϕ=μ0I2πx×adx\phi = \int {\dfrac{{{\mu _0}I}}{{2\pi x}} \times adx}
The limits can be specified to be, (ba)\left( {b - a} \right) to bb .
ϕ=μ0Ia2πbabdxx=μ0Ia2π[logebloge(ba)]\phi = \dfrac{{{\mu _0}Ia}}{{2\pi }}\int_{b - a}^b {\dfrac{{dx}}{x}} = \dfrac{{{\mu _0}Ia}}{{2\pi }}\left[ {{{\log }_e}b - {{\log }_e}(b - a)} \right]
ϕ=μ0Ia2πloge(bba)\Rightarrow \phi = \dfrac{{{\mu _0}Ia}}{{2\pi }}{\log _e}\left( {\dfrac{b}{{b - a}}} \right)
Now, consider the final position to find flux for,

Finding flux using integration,
ϕ=μ0I2πx×adx\phi = \int {\dfrac{{{\mu _0}I}}{{2\pi x}} \times adx}
but the limits will be bb to b+ab + a .
ϕ=μ0Ia2πbb+adxx=μ0Ia2π[loge(b+a)loge(b)]\phi = \dfrac{{{\mu _0}Ia}}{{2\pi }}\int_b^{b + a} {\dfrac{{dx}}{x}} = \dfrac{{{\mu _0}Ia}}{{2\pi }}\left[ {{{\log }_e}(b + a) - {{\log }_e}(b)} \right]
ϕ=μ0Ia2πloge(b+ab)\Rightarrow \phi = \dfrac{{{\mu _0}Ia}}{{2\pi }}{\log _e}\left( {\dfrac{{b + a}}{b}} \right)
Now we have both the initial and final flux let us find the differences between them, Δϕ=ϕf(ϕi)=μ0Ia2πloge(b+ab)μ0Ia2πloge(bba)\Delta \phi = {\phi _f} - ( - {\phi _i}) = \dfrac{{{\mu _0}Ia}}{{2\pi }}{\log _e}\left( {\dfrac{{b + a}}{b}} \right) - \dfrac{{{\mu _0}Ia}}{{2\pi }}{\log _e}\left( {\dfrac{b}{{b - a}}} \right)
Since ϕ=B.dAcosθ\phi = B.dA\cos \theta and here θ=180\theta = 180^\circ
Δϕ=μ0Ia2πloge[(b+ab)×(bba)]\Delta \phi = \dfrac{{{\mu _0}Ia}}{{2\pi }}{\log _e}\left[ {\left( {\dfrac{{b + a}}{b}} \right) \times \left( {\dfrac{b}{{b - a}}} \right)} \right]
Δϕ=μ0Ia2πloge(b+aba)\Rightarrow \Delta \phi = \dfrac{{{\mu _0}Ia}}{{2\pi }}{\log _e}\left( {\dfrac{{b + a}}{{b - a}}} \right)
Since we know that Qind=ΔϕR{Q_{ind}} = \dfrac{{\Delta \phi }}{R} ,
Q=μ0Ia2πRloge(b+aba)Q = \dfrac{{{\mu _0}Ia}}{{2\pi R}}{\log _e}\left( {\dfrac{{b + a}}{{b - a}}} \right)
Hence the correct answer is option C.

Note
The problem can also be solved without breaking the limits and taking , solving for, ϕ=μ0Ia2πbab+adxx=μ0Ia2π[loge(b+a)loge(ba)]\phi = \dfrac{{{\mu _0}Ia}}{{2\pi }}\int_{b - a}^{b + a} {\dfrac{{dx}}{x}} = \dfrac{{{\mu _0}Ia}}{{2\pi }}\left[ {{{\log }_e}(b + a) - {{\log }_e}(b - a)} \right]
ϕ=μ0Ia2π[loge(b+a)loge(ba)]=μ0Ia2πloge(b+aba)\Rightarrow \phi = \dfrac{{{\mu _0}Ia}}{{2\pi }}\left[ {{{\log }_e}(b + a) - {{\log }_e}(b - a)} \right] = \dfrac{{{\mu _0}Ia}}{{2\pi }}{\log _e}\left( {\dfrac{{b + a}}{{b - a}}} \right)
Thus Qind{Q_{ind}} will be, Q=μ0Ia2πRloge[b+aba]Q = \dfrac{{{\mu _0}Ia}}{{2\pi R}}{\log _e}\left[ {\dfrac{{b + a}}{{b - a}}} \right] .