Solveeit Logo

Question

Mathematics Question on Straight lines

A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle α(0<α<π4)\alpha\left(0 < \alpha < \frac{\pi}{4}\right) with the positive direction of x-axis. The equation of its diagonal not passing through the origin :

A

y(cosα+sinα)+x(cosαsinα)=ay(\cos \alpha + \sin \, \alpha) + x(\cos \, \alpha - \sin\, \alpha ) = a

B

y(cosαsinα)x(sinαcosα)=ay(\cos \alpha - \sin \alpha) - x(\sin \alpha - cos \,\alpha) = a

C

y(cosα+sinα)+x(sinαcosα)=ay(\cos \alpha + \sin \alpha ) + x(\sin \alpha - \cos \alpha) = a

D

y(cosα+sinα)+x(sinα+cosα)=ay(\cos \alpha + \sin \alpha) + x(\sin \alpha + \cos \alpha) = a

Answer

y(cosα+sinα)+x(cosαsinα)=ay(\cos \alpha + \sin \, \alpha) + x(\cos \, \alpha - \sin\, \alpha ) = a

Explanation

Solution

Co-ordinates of A=(acosα,asinα)A = (a \cos \alpha , a \sin \alpha ) Equation of OB, y=tan(π4+α)x y = \tan \left( \frac{\pi}{4} + \alpha \right) x CArCA \bot^r to OB \therefore slope of CA =cot(π4+α) = - \cot \left( \frac{\pi}{4} + \alpha \right) Equation of CA yasinα=cot(π4+α)(xacosα)y -a \sin\alpha =- \cot\left(\frac{\pi}{4} + \alpha\right) \left(x-a \cos\alpha\right) (yasinα)(tan(π4+α))=(acosαx)\Rightarrow\left(y -a \sin\alpha\right) \left(\tan \left(\frac{\pi}{4} + \alpha\right)\right) = \left(a \cos\alpha-x\right) (yasinα)(tanπ4+tanα1tanπ4tanα)(acosαx)\Rightarrow \left(y -a \sin\alpha\right) \left(\frac{\tan \frac{\pi}{4}+ \tan\alpha}{1- \tan \frac{\pi}{4} \tan\alpha}\right) \left(a \cos\alpha-x\right) (yasinα)(1+tanα)=(acosαx)(1tanα)\Rightarrow \left(y -a\sin \alpha\right) \left(1+\tan\alpha\right) = \left(a\cos\alpha-x\right)\left(1 -\tan\alpha\right) (yasinα)(cosα+sinα)=(acosαx)(cosαsinα) \Rightarrow \left(y -a \sin\alpha\right)\left(\cos\alpha+\sin\alpha\right)=\left(a \cos\alpha - x\right)\left(\cos\alpha - \sin\,\alpha\right) y(cos+sinα)asinαcosαasin2α\Rightarrow y \left(\cos+\sin\alpha\right) -a \sin\alpha \cos\alpha -a \sin^{2} \alpha =acos2αacosαsinαx(cosαsinα)= a \cos^{2} \alpha - a \cos\alpha \sin\alpha - x \left(\cos\alpha - \sin\alpha\right) y(cosα+sinα)+x(cosαsinα)=a\Rightarrow y \left(\cos\alpha + \sin\alpha\right) + x\left(\cos\alpha - \sin\alpha\right) = a y(sinα+cosα)+x(cosαsinα)=ay \left(\sin\alpha + \cos\alpha\right) + x \left(\cos\alpha - \sin\alpha\right) = a.