Question
Mathematics Question on Straight lines
A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle α(0<α<4π) with the positive direction of x-axis. The equation of its diagonal not passing through the origin :
y(cosα+sinα)+x(cosα−sinα)=a
y(cosα−sinα)−x(sinα−cosα)=a
y(cosα+sinα)+x(sinα−cosα)=a
y(cosα+sinα)+x(sinα+cosα)=a
y(cosα+sinα)+x(cosα−sinα)=a
Solution
Co-ordinates of A=(acosα,asinα) Equation of OB, y=tan(4π+α)x CA⊥r to OB ∴ slope of CA =−cot(4π+α) Equation of CA y−asinα=−cot(4π+α)(x−acosα) ⇒(y−asinα)(tan(4π+α))=(acosα−x) ⇒(y−asinα)(1−tan4πtanαtan4π+tanα)(acosα−x) ⇒(y−asinα)(1+tanα)=(acosα−x)(1−tanα) ⇒(y−asinα)(cosα+sinα)=(acosα−x)(cosα−sinα) ⇒y(cos+sinα)−asinαcosα−asin2α =acos2α−acosαsinα−x(cosα−sinα) ⇒y(cosα+sinα)+x(cosα−sinα)=a y(sinα+cosα)+x(cosα−sinα)=a.