Solveeit Logo

Question

Question: A square of side a lies above the *x*-axis and has one vertex at the origin. The side passing throug...

A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle α(0<α<π4)\alpha \left( 0 < \alpha < \frac { \pi } { 4 } \right) with the positive direction of x-axis. The equation of its diagonal not passing through the origin is

A

y(cosαsinα)x(sinαcosα)=ay ( \cos \alpha - \sin \alpha ) - x ( \sin \alpha - \cos \alpha ) = a

B

y(cosα+sinα)x(sinαcosα)=ay ( \cos \alpha + \sin \alpha ) - x ( \sin \alpha - \cos \alpha ) = a

C

y(cosα+sinα)+x(sinα+cosα)=ay ( \cos \alpha + \sin \alpha ) + x ( \sin \alpha + \cos \alpha ) = a

D

y(cosα+sinα)+x(sinαcosα)=ay ( \cos \alpha + \sin \alpha ) + x ( \sin \alpha - \cos \alpha ) = a

Answer

y(cosα+sinα)x(sinαcosα)=ay ( \cos \alpha + \sin \alpha ) - x ( \sin \alpha - \cos \alpha ) = a

Explanation

Solution

Co-ordinates of A=(acosα,asinα)A = ( a \cos \alpha , a \sin \alpha ); Equation of OBO B y=tan(π4+α)xy = \tan \left( \frac { \pi } { 4 } + \alpha \right) x

CAC A \perp to OB ; \therefore slope of CA=cot(π4+α)C A = - \cot \left( \frac { \pi } { 4 } + \alpha \right)

Equation of CA, yasinα=cot(π4+α)(xacosα)y - a \sin \alpha = - \cot \left( \frac { \pi } { 4 } + \alpha \right) ( x - a \cos \alpha )

y(sinα+cosα)+x(cosasinα)=ay ( \sin \alpha + \cos \alpha ) + x ( \cos a - \sin \alpha ) = a .