Solveeit Logo

Question

Question: A square loop of side $\ell$ having uniform linear charge density $\lambda$ is placed in $xy$ plane ...

A square loop of side \ell having uniform linear charge density λ\lambda is placed in xyxy plane as shown in the figure. There is a non-uniform electric field E=a(x+)i^\overrightarrow{E} = \frac{a}{\ell}(x+\ell)\hat{i} where a and \ell are constants. The resultant electric force on the loop is having value naλna\lambda\ell. Find value of nn.

Answer

5

Explanation

Solution

The force on a charged element dqdq in an electric field E\vec{E} is dF=dqEd\vec{F} = dq \vec{E}. For a linear charge density λ\lambda, dq=λdldq = \lambda dl. So, dF=λdlEd\vec{F} = \lambda dl \vec{E}.

The electric field is E=a(x+)i^\vec{E} = \frac{a}{\ell}(x+\ell)\hat{i}, always in the i^\hat{i} direction.

  1. Side AB (x=x=\ell, yy from 00 to \ell): E=2ai^\vec{E}=2a\hat{i}. Force FAB=0λdy(2ai^)=2aλi^\vec{F}_{AB} = \int_0^\ell \lambda dy (2a\hat{i}) = 2a\lambda\ell\hat{i}.

  2. Side BC (y=y=\ell, xx from \ell to 22\ell): E=a(x+)i^\vec{E}=\frac{a}{\ell}(x+\ell)\hat{i}. Force FBC=2λdxa(x+)i^=52aλi^\vec{F}_{BC} = \int_{\ell}^{2\ell} \lambda dx \frac{a}{\ell}(x+\ell)\hat{i} = \frac{5}{2}a\lambda\ell\hat{i}.

  3. Side CD (x=2x=2\ell, yy from 00 to \ell): E=3ai^\vec{E}=3a\hat{i}. Force FCD=0λdy(3ai^)=3aλi^\vec{F}_{CD} = \int_0^\ell \lambda dy (3a\hat{i}) = 3a\lambda\ell\hat{i}.

  4. Side DA (y=0y=0, xx from 22\ell to \ell): E=a(x+)i^\vec{E}=\frac{a}{\ell}(x+\ell)\hat{i}. Force FDA=2λdxa(x+)i^=52aλi^\vec{F}_{DA} = \int_{2\ell}^{\ell} \lambda dx \frac{a}{\ell}(x+\ell)\hat{i} = -\frac{5}{2}a\lambda\ell\hat{i}.

Summing these forces: Ftotal=(2aλ+52aλ+3aλ52aλ)i^=(2+3)aλi^=5aλi^\vec{F}_{total} = (2a\lambda\ell + \frac{5}{2}a\lambda\ell + 3a\lambda\ell - \frac{5}{2}a\lambda\ell)\hat{i} = (2+3)a\lambda\ell\hat{i} = 5a\lambda\ell\hat{i}.

Comparing with naλna\lambda\ell, we find n=5n=5.