Solveeit Logo

Question

Question: A square loop of side 'a' & resistance R moves with a uniform velocity v away from a long wire that ...

A square loop of side 'a' & resistance R moves with a uniform velocity v away from a long wire that carries current I as shown in figure. The loop is moved away from the wire with side AB always parallel to the wire. Initially, distance between the side AB of the loop & wire is 'a' The work done when the loop is moved through a distance 'a' from initial position is Δw=μ02I2av2π2R[13+ln(k)]\Delta w = \frac{\mu_0^2I^2av}{2\pi^2R} [\frac{1}{3} + ln(k)]. Find the value of k.

Answer

0.75

Explanation

Solution

The problem asks us to find the value of 'k' by comparing the calculated work done with the given expression for work done.

1. Magnetic Field and Flux: The magnetic field produced by a long straight wire carrying current I at a distance 'x' is given by: B(x)=μ0I2πxB(x) = \frac{\mu_0 I}{2\pi x}

The magnetic flux (Φ\Phi) through the square loop of side 'a' when its inner side (AB) is at a distance 'x' from the wire can be calculated by integrating the magnetic field over the area of the loop.

Consider an elemental strip of width 'dr' at a distance 'r' from the wire. The area of this strip is dA=adrdA = a \cdot dr. The flux through this elemental strip is dΦ=B(r)dA=μ0I2πradrd\Phi = B(r) dA = \frac{\mu_0 I}{2\pi r} a dr.

The total flux through the loop is obtained by integrating from xx (distance of side AB) to x+ax+a (distance of side CD): Φ=xx+aμ0Ia2πrdr=μ0Ia2π[lnr]xx+a\Phi = \int_x^{x+a} \frac{\mu_0 I a}{2\pi r} dr = \frac{\mu_0 I a}{2\pi} [\ln r]_x^{x+a} Φ=μ0Ia2π[ln(x+a)ln(x)]=μ0Ia2πln(x+ax)\Phi = \frac{\mu_0 I a}{2\pi} \left[\ln(x+a) - \ln(x)\right] = \frac{\mu_0 I a}{2\pi} \ln\left(\frac{x+a}{x}\right)

2. Induced EMF: As the loop moves with a uniform velocity 'v' away from the wire, 'x' changes with time (dx/dt=vdx/dt = v). The induced EMF (E\mathcal{E}) is given by Faraday's law of electromagnetic induction: E=dΦdt=dΦdxdxdt=vdΦdx\mathcal{E} = -\frac{d\Phi}{dt} = -\frac{d\Phi}{dx} \frac{dx}{dt} = -v \frac{d\Phi}{dx} E=vddx(μ0Ia2πln(x+ax))\mathcal{E} = -v \frac{d}{dx}\left(\frac{\mu_0 I a}{2\pi} \ln\left(\frac{x+a}{x}\right)\right) E=vμ0Ia2πddx(ln(x+a)ln(x))\mathcal{E} = -v \frac{\mu_0 I a}{2\pi} \frac{d}{dx}\left(\ln(x+a) - \ln(x)\right) E=vμ0Ia2π(1x+a1x)\mathcal{E} = -v \frac{\mu_0 I a}{2\pi} \left(\frac{1}{x+a} - \frac{1}{x}\right) E=vμ0Ia2π(x(x+a)x(x+a))=vμ0Ia2π(ax(x+a))\mathcal{E} = -v \frac{\mu_0 I a}{2\pi} \left(\frac{x - (x+a)}{x(x+a)}\right) = -v \frac{\mu_0 I a}{2\pi} \left(\frac{-a}{x(x+a)}\right) E=μ0Ia2v2πx(x+a)\mathcal{E} = \frac{\mu_0 I a^2 v}{2\pi x(x+a)}

3. Induced Current: The induced current (ii) in the loop, given its resistance R, is: i=ER=μ0Ia2v2πRx(x+a)i = \frac{\mathcal{E}}{R} = \frac{\mu_0 I a^2 v}{2\pi R x(x+a)}

4. Force on the Loop: The magnetic force on the loop opposes its motion (Lenz's Law). The forces on sides AD and BC cancel out. The forces on sides AB and CD are:

Force on AB (FABF_{AB}): This side is closer to the wire, so the field is stronger. The current in AB (clockwise direction, to induce a field into the page to oppose the decrease in flux) will be upwards. Force FAB=iaBABF_{AB} = i a B_{AB} (to the left, attractive). FAB=(μ0Ia2v2πRx(x+a))a(μ0I2πx)=μ02I2a3v4π2Rx2(x+a)F_{AB} = \left(\frac{\mu_0 I a^2 v}{2\pi R x(x+a)}\right) a \left(\frac{\mu_0 I}{2\pi x}\right) = \frac{\mu_0^2 I^2 a^3 v}{4\pi^2 R x^2(x+a)}

Force on CD (FCDF_{CD}): The current in CD will be downwards. Force FCD=iaBCDF_{CD} = i a B_{CD} (to the right, repulsive). FCD=(μ0Ia2v2πRx(x+a))a(μ0I2π(x+a))=μ02I2a3v4π2Rx(x+a)2F_{CD} = \left(\frac{\mu_0 I a^2 v}{2\pi R x(x+a)}\right) a \left(\frac{\mu_0 I}{2\pi (x+a)}\right) = \frac{\mu_0^2 I^2 a^3 v}{4\pi^2 R x(x+a)^2}

The net magnetic force opposing the motion (to the left) is Fnet=FABFCDF_{net} = F_{AB} - F_{CD}: Fnet=μ02I2a3v4π2R(1x2(x+a)1x(x+a)2)F_{net} = \frac{\mu_0^2 I^2 a^3 v}{4\pi^2 R} \left( \frac{1}{x^2(x+a)} - \frac{1}{x(x+a)^2} \right) Fnet=μ02I2a3v4π2R((x+a)xx2(x+a)2)=μ02I2a3v4π2Rax2(x+a)2F_{net} = \frac{\mu_0^2 I^2 a^3 v}{4\pi^2 R} \left( \frac{(x+a) - x}{x^2(x+a)^2} \right) = \frac{\mu_0^2 I^2 a^3 v}{4\pi^2 R} \frac{a}{x^2(x+a)^2} Fnet=μ02I2a4v4π2Rx2(x+a)2F_{net} = \frac{\mu_0^2 I^2 a^4 v}{4\pi^2 R x^2(x+a)^2}

To move the loop with uniform velocity 'v', an external force equal in magnitude and opposite in direction to FnetF_{net} must be applied. So, Fext=FnetF_{ext} = F_{net}.

5. Work Done: The work done (Δw\Delta w) when the loop is moved through a distance 'a' from its initial position (where the distance between AB and the wire is 'a') is: Δw=initial_xfinal_xFextdx\Delta w = \int_{initial\_x}^{final\_x} F_{ext} dx

Initial position: x1=ax_1 = a. Final position: x2=a+a=2ax_2 = a+a = 2a. Δw=a2aμ02I2a4v4π2Rx2(x+a)2dx\Delta w = \int_a^{2a} \frac{\mu_0^2 I^2 a^4 v}{4\pi^2 R x^2(x+a)^2} dx

The constant term is μ02I2a4v4π2R\frac{\mu_0^2 I^2 a^4 v}{4\pi^2 R}. We need to evaluate the integral: J=a2a1x2(x+a)2dxJ = \int_a^{2a} \frac{1}{x^2(x+a)^2} dx

Using partial fraction decomposition: 1x2(x+a)2=Ax+Bx2+Cx+a+D(x+a)2\frac{1}{x^2(x+a)^2} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+a} + \frac{D}{(x+a)^2} Multiplying by x2(x+a)2x^2(x+a)^2: 1=Ax(x+a)2+B(x+a)2+Cx2(x+a)+Dx21 = Ax(x+a)^2 + B(x+a)^2 + Cx^2(x+a) + Dx^2

Setting x=0    1=B(a2)    B=1/a2x=0 \implies 1 = B(a^2) \implies B = 1/a^2. Setting x=a    1=D(a)2    D=1/a2x=-a \implies 1 = D(-a)^2 \implies D = 1/a^2. Comparing coefficients of x3x^3: A+C=0    C=AA+C=0 \implies C=-A. Comparing coefficients of x2x^2: A(2a)+B+C(a)+D=0    2aA+1/a2+aC+1/a2=0A(2a) + B + C(a) + D = 0 \implies 2aA + 1/a^2 + aC + 1/a^2 = 0 2aA+aC+2/a2=02aA + aC + 2/a^2 = 0. Substitute C=AC=-A: 2aAaA+2/a2=0    aA+2/a2=0    A=2/a32aA - aA + 2/a^2 = 0 \implies aA + 2/a^2 = 0 \implies A = -2/a^3. So, C=2/a3C = 2/a^3.

Thus, the integrand is: 1x2(x+a)2=2a3x+1a2x2+2a3(x+a)+1a2(x+a)2\frac{1}{x^2(x+a)^2} = -\frac{2}{a^3 x} + \frac{1}{a^2 x^2} + \frac{2}{a^3 (x+a)} + \frac{1}{a^2 (x+a)^2}

Now, integrate: J=[2a3lnx1a2x+2a3lnx+a1a2(x+a)]a2aJ = \left[ -\frac{2}{a^3} \ln|x| - \frac{1}{a^2 x} + \frac{2}{a^3} \ln|x+a| - \frac{1}{a^2 (x+a)} \right]_a^{2a} J=[2a3lnx+ax1a2x1a2(x+a)]a2aJ = \left[ \frac{2}{a^3} \ln\left|\frac{x+a}{x}\right| - \frac{1}{a^2 x} - \frac{1}{a^2 (x+a)} \right]_a^{2a}

Evaluate at the upper limit (x=2ax=2a): 2a3ln(2a+a2a)1a2(2a)1a2(2a+a)=2a3ln(32)12a313a3\frac{2}{a^3} \ln\left(\frac{2a+a}{2a}\right) - \frac{1}{a^2 (2a)} - \frac{1}{a^2 (2a+a)} = \frac{2}{a^3} \ln\left(\frac{3}{2}\right) - \frac{1}{2a^3} - \frac{1}{3a^3} =2a3ln(32)3+26a3=2a3ln(32)56a3= \frac{2}{a^3} \ln\left(\frac{3}{2}\right) - \frac{3+2}{6a^3} = \frac{2}{a^3} \ln\left(\frac{3}{2}\right) - \frac{5}{6a^3}

Evaluate at the lower limit (x=ax=a): 2a3ln(a+aa)1a2(a)1a2(a+a)=2a3ln(2)1a312a3\frac{2}{a^3} \ln\left(\frac{a+a}{a}\right) - \frac{1}{a^2 (a)} - \frac{1}{a^2 (a+a)} = \frac{2}{a^3} \ln(2) - \frac{1}{a^3} - \frac{1}{2a^3} =2a3ln(2)2+12a3=2a3ln(2)32a3= \frac{2}{a^3} \ln(2) - \frac{2+1}{2a^3} = \frac{2}{a^3} \ln(2) - \frac{3}{2a^3}

Subtract the lower limit from the upper limit: J=(2a3ln(32)56a3)(2a3ln(2)32a3)J = \left( \frac{2}{a^3} \ln\left(\frac{3}{2}\right) - \frac{5}{6a^3} \right) - \left( \frac{2}{a^3} \ln(2) - \frac{3}{2a^3} \right) J=2a3(ln(32)ln(2))56a3+32a3J = \frac{2}{a^3} \left( \ln\left(\frac{3}{2}\right) - \ln(2) \right) - \frac{5}{6a^3} + \frac{3}{2a^3} J=2a3ln(3/22)+5+96a3J = \frac{2}{a^3} \ln\left(\frac{3/2}{2}\right) + \frac{-5+9}{6a^3} J=2a3ln(34)+46a3=2a3ln(34)+23a3J = \frac{2}{a^3} \ln\left(\frac{3}{4}\right) + \frac{4}{6a^3} = \frac{2}{a^3} \ln\left(\frac{3}{4}\right) + \frac{2}{3a^3}

Now, substitute J back into the work done expression: Δw=μ02I2a4v4π2R(2a3ln(34)+23a3)\Delta w = \frac{\mu_0^2 I^2 a^4 v}{4\pi^2 R} \left( \frac{2}{a^3} \ln\left(\frac{3}{4}\right) + \frac{2}{3a^3} \right) Δw=μ02I2av4π2R(2ln(34)+23)\Delta w = \frac{\mu_0^2 I^2 a v}{4\pi^2 R} \left( 2 \ln\left(\frac{3}{4}\right) + \frac{2}{3} \right)

Factor out 2 from the bracket and simplify the leading constant: Δw=μ02I2av2π2R(ln(34)+13)\Delta w = \frac{\mu_0^2 I^2 a v}{2\pi^2 R} \left( \ln\left(\frac{3}{4}\right) + \frac{1}{3} \right)

6. Compare with the given expression: The given work done is Δw=μ02I2av2π2R[13+ln(k)]\Delta w = \frac{\mu_0^2I^2av}{2\pi^2R} [\frac{1}{3} + ln(k)]. Comparing our calculated expression with the given one: μ02I2av2π2R[13+ln(34)]=μ02I2av2π2R[13+ln(k)]\frac{\mu_0^2I^2av}{2\pi^2R} [\frac{1}{3} + \ln(\frac{3}{4})] = \frac{\mu_0^2I^2av}{2\pi^2R} [\frac{1}{3} + ln(k)] Therefore, ln(k)=ln(34)\ln(k) = \ln(\frac{3}{4}), which implies k=34k = \frac{3}{4}.

The final answer is 0.75\boxed{0.75}.