Solveeit Logo

Question

Question: A square loop of side ‘a’ and resistance R is placed in a transverse uniform magnetic field B. If it...

A square loop of side ‘a’ and resistance R is placed in a transverse uniform magnetic field B. If it suddenly changes into circular form in time t then magnitude of induced charge will be

A

Ba2R(4π1)\frac { B a ^ { 2 } } { R } ( 4 \pi - 1 )

B

Ba2R(114π)\frac { B a ^ { 2 } } { R } \left( 1 - \frac { 1 } { 4 \pi } \right)

C

Ba2R(14π1)\frac { B a ^ { 2 } } { R } \left( \frac { 1 } { 4 \pi } - 1 \right)

D

Ba2R(4π1)\frac { B a ^ { 2 } } { R } \left( \frac { 4 } { \pi } - 1 \right)

Answer

Ba2R(4π1)\frac { B a ^ { 2 } } { R } \left( \frac { 4 } { \pi } - 1 \right)

Explanation

Solution

Initially It’s area A1 = a2 ; and flux linked φ1 = BA1

Finally It’s area A2 = πr2 =π(2aπ)2=4a2π= \pi \left( \frac { 2 a } { \pi } \right) ^ { 2 } = \frac { 4 a ^ { 2 } } { \pi } and flux

linked φ2 = BA­2­

Induced emf e=ΔϕΔt=ϕ2ϕ1Δt=B(A2A1)Δt| e | = \frac { \Delta \phi } { \Delta t } = \frac { \phi _ { 2 } - \phi _ { 1 } } { \Delta t } = \frac { B \left( A _ { 2 } - A _ { 1 } \right) } { \Delta t }

=Ba2t(4π1)= \frac { B a ^ { 2 } } { t } \left( \frac { 4 } { \pi } - 1 \right) so induced charged

=Ba2R(4π1)= \frac { B a ^ { 2 } } { R } \left( \frac { 4 } { \pi } - 1 \right)