Solveeit Logo

Question

Physics Question on Electromagnetic induction

A square loop of side 22cm is changed to a circle in time 0.4 sec with its plane normal to a inagnetic field 0.2T. The emf induced is

A

+6.6mv

B

-6.6mv

C

+13.2mv

D

-13.2mv

Answer

-6.6mv

Explanation

Solution

Given:
The side length of the square loop, L = 0.22m
Time taken for transformation, Δt=0.4\Delta t = 0.4s
Magnetic field strength, B = 0.2T
The angle between the magnetic field and normal to the plane, θ=90\theta = 90^\circ

Area of the square loop, As=L2=0.0484 m2A_{\mathrm{s}} = L^2 = 0.0484 \mathrm{~m}^2
Area of the circle, Ac=π(L2π)2=0.00385 m2A_{\mathrm{c}} = \pi \left( \frac{L}{2\pi} \right)^2 = 0.00385 \mathrm{~m}^2

Change in area, ΔA=AcAs=0.00385 m20.0484 m2=0.04455 m2\Delta A = A_{\mathrm{c}} - A_{\mathrm{s}} = 0.00385 \mathrm{~m}^2 - 0.0484 \mathrm{~m}^2 = -0.04455 \mathrm{~m}^2

Now, calculate the induced emf:
ε=ΔφBΔt=BΔAcosθΔt=0.2×(0.04455)0.4=6.66 mV\varepsilon = \frac{\Delta \varphi_{\mathrm{B}}}{\Delta t} = \frac{B \Delta A \cos \theta}{\Delta t} = \frac{0.2 \times (-0.04455)}{0.4} = -6.66 \mathrm{~mV}

So, the correct option is (B): -6.6mV