Solveeit Logo

Question

Physics Question on work, energy and power

A spring of spring constant 5×103Nm15 \times 10^3 Nm^{-1} is stretched initially by 5 cm from the unstretched position. Then the work required to stretch it further by another 5 cm is

A

12.50 N-m

B

18.75 N-m

C

25.00 N-m

D

6.25 N-m

Answer

18.75 N-m

Explanation

Solution

Work done W1=12k×x12W_1=\frac{1}{2}k \times x^2_1 =12×5×103×(5×102)2\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\frac{1}{2}\times5\times10^3 \times(5\times10^{-2})^2 =6.25J\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = 6.25 J W2=12k(x1+x2)2\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, W_2=\frac{1}{2}k(x_1+x_2)^2 =12×5×103(5×102+5×102)2\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\frac{1}{2} \times5\times10^3 (5\times10^{-2}+5\times 10^{-2})^2 =25J\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =25 J Net work done =W2W1\, \, \, \, \, \, \, \, \, \, \, = W_2 - W_1 =256.25\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =25-6.25 18.75J=18.75Nm\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 18.75 J =18.75 N-m