Solveeit Logo

Question

Question: A spring balance has a scale that reads from 0 to 50 kg. The length of the scale is 20 cm. A block o...

A spring balance has a scale that reads from 0 to 50 kg. The length of the scale is 20 cm. A block of mass m is suspended from this balance, when displaced and released, it oscillates with a period 0.5 s. The value of m is

(Take g = 10 ms–2)

A

8 kg

B

12 kg

C

16 kg

D

20 kg

Answer

16 kg

Explanation

Solution

The 20 cm length of the scalar reads upto 50 kg

F=mg=(50 kg)(10 ms2)=500 N\therefore \mathrm { F } = \mathrm { mg } = ( 50 \mathrm {~kg} ) \left( 10 \mathrm {~ms} ^ { - 2 } \right) = 500 \mathrm {~N}

And

\therefore Spring constant, k=Fx=500 N0.2 m=2500Nm1\mathrm { k } = \frac { \mathrm { F } } { \mathrm { x } } = \frac { 500 \mathrm {~N} } { 0.2 \mathrm {~m} } = 2500 \mathrm { Nm } ^ { - 1 }

As T=2π mk\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm {~m} } { \mathrm { k } } }

Squaring both sides, we get

T2=4π2 mk\mathrm { T } ^ { 2 } = \frac { 4 \pi ^ { 2 } \mathrm {~m} } { \mathrm { k } }

m=T2k4π2=(0.5 s)2×(2500Nm1)4×(3.14)02=16 kg\mathrm { m } = \frac { \mathrm { T } ^ { 2 } \mathrm { k } } { 4 \pi ^ { 2 } } = \frac { ( 0.5 \mathrm {~s} ) ^ { 2 } \times \left( 2500 \mathrm { Nm } ^ { - 1 } \right) } { 4 \times ( 3.14 ) ^ { 02 } } = 16 \mathrm {~kg}