Solveeit Logo

Question

Physics Question on Electric Field

A spherically symmetric charge distribution is considered with charge density varying as
ρ(r)={ρ0(34rR);for rR Zero;for r>Rρ(r) = \begin{cases} ρ_0(\frac 34−\frac rR) &; \text{for} \ r≤R\\\ Zero &; \text{for}\ r>R \end{cases}
Where, r(r<R) is the distance from the centre O (as shown in figure) The electric field at point P will be :A spherically symmetric charge distribution

A

ρ0r4ε0(34rR)\frac {ρ_0r}{4ε_0}(\frac 34−\frac rR)

B

ρ0r3ε0(34rR)\frac {ρ_0r}{3ε_0}(\frac 34−\frac rR)

C

ρ0r4ε0(1rR)\frac {ρ_0r}{4ε_0}(1−\frac rR)

D

ρ0r5ε0(1rR)\frac {ρ_0r}{5ε_0}(1−\frac rR)

Answer

ρ0r4ε0(1rR)\frac {ρ_0r}{4ε_0}(1−\frac rR)

Explanation

Solution

(4πr2)Eρ=Qinε0(4πr^2)E_ρ=\frac {Q_{in}}{ε_0}

=0rρ0(34rR)4πr2drε0=\frac {∫_0^r ρ_0(\frac 34−\frac rR)4πr^2dr}{ε_0}

=ρ0π4ε0(r34r44R)=\frac {ρ_0\pi4}{ε_0}(\frac {r^3}{4}−\frac {r^4}{4R})
Now, the electric field at point P will be:

Eρ=ρ04ε0(rr2R)E_ρ=\frac {ρ_0}{4ε_0}(r−\frac {r^2}{R})

Eρ=ρ0r4ε0(1rR)E_ρ=\frac {ρ_0r}{4ε_0}(1−\frac rR)

So, the correct option is (C): ρ0r4ε0(1rR)\frac {ρ_0r}{4ε_0}(1−\frac rR)