Solveeit Logo

Question

Question: A spherically symmetric charge distribution is characterised by a charge density having the followin...

A spherically symmetric charge distribution is characterised by a charge density having the following variation:
ρ(r)=ρ0(1rR)for r<R,\rho(r) = \rho_0\Bigl(1 - \frac{r}{R}\Bigr)\quad \text{for }r<R,
ρ(r)=0for rR.\rho(r) = 0\quad \text{for }r \ge R.
Where rr is the distance from the centre of the charge distribution and ρ0\rho_0 is a constant. The electric field at an internal point (r<R)(r<R) is:

A

ρ03ϵ0(r3r24R)\displaystyle \frac{\rho_0}{3\epsilon_0}\Bigl(\frac{r}{3}-\frac{r^2}{4R}\Bigr)

B

ρ04ϵ0(r3r24R)\displaystyle \frac{\rho_0}{4\epsilon_0}\Bigl(\frac{r}{3}-\frac{r^2}{4R}\Bigr)

C

ρ0ϵ0(r3r24R)\displaystyle \frac{\rho_0}{\epsilon_0}\Bigl(\frac{r}{3}-\frac{r^2}{4R}\Bigr)

D

ρ012ϵ0(r3r24R)\displaystyle \frac{\rho_0}{12\epsilon_0}\Bigl(\frac{r}{3}-\frac{r^2}{4R}\Bigr)

Answer

ρ0ϵ0(r3r24R)\displaystyle \frac{\rho_0}{\epsilon_0}\Bigl(\frac{r}{3}-\frac{r^2}{4R}\Bigr)

Explanation

Solution

Gauss’s law approach

  1. Compute the enclosed charge for r<Rr<R:
Qenc(r)=0rρ0(1rR)4πr2dr=4πρ0[r33r44R].Q_{\rm enc}(r) = \int_0^r \rho_0\Bigl(1-\frac{r'}{R}\Bigr)\,4\pi r'^2\,dr' =4\pi\rho_0\Bigl[\frac{r^3}{3}-\frac{r^4}{4R}\Bigr].
  1. Apply Gauss’s law:
E4πr2=Qenc(r)ϵ0        E(r)=14πϵ0Qenc(r)r2=ρ0ϵ0(r3r24R).E\cdot 4\pi r^2 = \frac{Q_{\rm enc}(r)}{\epsilon_0} \;\;\Longrightarrow\;\; E(r) =\frac{1}{4\pi\epsilon_0}\frac{Q_{\rm enc}(r)}{r^2} =\frac{\rho_0}{\epsilon_0}\Bigl(\frac{r}{3}-\frac{r^2}{4R}\Bigr).