Solveeit Logo

Question

Question: A spherical surface of radius of curvature *R* separates air (refractive index 1.0) from glass (refr...

A spherical surface of radius of curvature R separates air (refractive index 1.0) from glass (refractive index 1.5). The centre of curvature is in the glass. A point object P placed in air is found to have a real image Q in the glass. The line PQ cuts the surface at a point O and PO=OQP O = O Q . The distance PO is equal to

A

5 R

B

3 R

C

2 R

D

1.5 R

Answer

5 R

Explanation

Solution

By using μ2vμ1u=μ2μ1R\frac { \mu _ { 2 } } { v } - \frac { \mu _ { 1 } } { u } = \frac { \mu _ { 2 } - \mu _ { 1 } } { R }

Where μ1=1\mu _ { 1 } = 1 μ2=1.5\mu _ { 2 } = 1.5 u = – OP, v = OQ

Hence 1.5OQ1OP=1.51(+R)\frac { 1.5 } { O Q } - \frac { 1 } { - O P } = \frac { 1.5 - 1 } { ( + R ) }1.5OP+1OP=0.5R\frac { 1.5 } { O P } + \frac { 1 } { O P } = \frac { 0.5 } { R }

⇒ OP = 5 R