Solveeit Logo

Question

Physics Question on mechanical properties of fluid

A spherical solid ball of volume VV is made of a material of density ρ1\rho_1 It is falling through a liquid of density ρ2(ρ2<ρ1)\rho_2(\rho_2 < \rho_1). Assume that the liquid applies a viscous force on the ball that is F=krvF = krv where rr is the radius of the ball and vv is the speed and kk is the constant of proportionality. The terminal speed of the ball is

A

4πr2g(ρ1ρ2)3k\frac{4\pi r^{2} g\left(\rho_{1} -\rho_{2}\right)}{3k}

B

πr2g(ρ1ρ2)3k\frac{\pi r^{2} g\left(\rho_{1} -\rho_{2}\right)}{3k}

C

πr2g(ρ1ρ2)k\frac{\pi r^{2} g\left(\rho_{1} -\rho_{2}\right)}{k}

D

πr2g(ρ1ρ2)4k\frac{\pi r^{2} g\left(\rho_{1} -\rho_{2}\right)}{4k}

Answer

4πr2g(ρ1ρ2)3k\frac{4\pi r^{2} g\left(\rho_{1} -\rho_{2}\right)}{3k}

Explanation

Solution

When the falling ball attains the terminal velocity υT\upsilon_T, then the acceleration of the ball is zero. In this situation mg=FB+FVmg = F_{B} +F_{V} Vρ1g=Vρ2g+krυTV\rho_{1}g = V\rho_{2}g +kr\upsilon_{T} υT=V(ρ1ρ2)gkr\upsilon_{T} = \frac{V\left(\rho_{1}-\rho_{2}\right)g}{kr} υT=43πr3(ρ1ρ2)gkr\upsilon_{T} =\frac{\frac{4}{3}\pi r^{3}\left(\rho_{1}-\rho_{2}\right)g }{kr} =4π2(ρ1ρ2)g3k = \frac{4\pi^{2}\left(\rho_{1} -\rho_{2}\right)g}{3k}