Solveeit Logo

Question

Question: A spherical refractive surface of radius 10 cm separates two media of refractive indices µ = 1 and µ...

A spherical refractive surface of radius 10 cm separates two media of refractive indices µ = 1 and µ = 32\frac{3}{2} respectively. A point object P starts from rest at t = 0 with an acceleration 2 cm/s². Find the speed of image at t = 1s.

A

2 cms⁻¹

B

6 cms⁻¹

C

12 cms⁻¹

D

None of these

Answer

None of these

Explanation

Solution

  1. Determine the object's position and velocity at t=1t = 1 s: The object starts from rest (v0=0v_0 = 0) at t=0t=0 with an acceleration a=2a = 2 cm/s2^2. Assuming the surface is at the origin and light travels from left to right, and the object is initially 2 cm from the surface, its initial position is u(0)=2u(0) = -2 cm. The acceleration is away from the surface, so it's in the negative direction, a=2a = -2 cm/s2^2. The position of the object at time tt is given by: u(t)=u(0)+v0t+12at2u(t) = u(0) + v_0 t + \frac{1}{2} a t^2 u(t)=2+(0)t+12(2)t2=2t2u(t) = -2 + (0)t + \frac{1}{2}(-2)t^2 = -2 - t^2 At t=1t = 1 s, the object's position is: u(1)=2(1)2=3u(1) = -2 - (1)^2 = -3 cm. The velocity of the object at time tt is: vobject(t)=v0+at=0+(2)t=2tv_{object}(t) = v_0 + at = 0 + (-2)t = -2t At t=1t = 1 s, the object's velocity is: vobject(1)=2(1)=2v_{object}(1) = -2(1) = -2 cm/s.

  2. Calculate the image position at t=1t = 1 s: Using the spherical refractive surface formula: μ2vμ1u=μ2μ1R\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R} Given: μ1=1\mu_1 = 1, μ2=3/2\mu_2 = 3/2, R=+10R = +10 cm, and u=3u = -3 cm. 3/2v13=3/2110\frac{3/2}{v} - \frac{1}{-3} = \frac{3/2 - 1}{10} 32v+13=1/210=120\frac{3}{2v} + \frac{1}{3} = \frac{1/2}{10} = \frac{1}{20} 32v=12013=32060=1760\frac{3}{2v} = \frac{1}{20} - \frac{1}{3} = \frac{3 - 20}{60} = -\frac{17}{60} v=32×(6017)=9017v = \frac{3}{2} \times \left(-\frac{60}{17}\right) = -\frac{90}{17} cm.

  3. Calculate the image velocity at t=1t = 1 s: Differentiate the refractive surface formula with respect to time tt: μ2ddt(1v)μ1ddt(1u)=0\mu_2 \frac{d}{dt}\left(\frac{1}{v}\right) - \mu_1 \frac{d}{dt}\left(\frac{1}{u}\right) = 0 μ2v2dvdt+μ1u2dudt=0-\frac{\mu_2}{v^2} \frac{dv}{dt} + \frac{\mu_1}{u^2} \frac{du}{dt} = 0 Let vimage=dvdtv_{image} = \frac{dv}{dt} and vobject=dudtv_{object} = \frac{du}{dt}. μ2v2vimage+μ1u2vobject=0-\frac{\mu_2}{v^2} v_{image} + \frac{\mu_1}{u^2} v_{object} = 0 vimage=μ1μ2v2u2vobjectv_{image} = \frac{\mu_1}{\mu_2} \frac{v^2}{u^2} v_{object} Substitute the values at t=1t=1 s: u=3u = -3 cm, v=90/17v = -90/17 cm, vobject=2v_{object} = -2 cm/s, μ1=1\mu_1 = 1, μ2=3/2\mu_2 = 3/2. vimage=13/2(90/17)2(3)2(2)v_{image} = \frac{1}{3/2} \frac{(-90/17)^2}{(-3)^2} (-2) vimage=23(90/17)29(2)v_{image} = \frac{2}{3} \frac{(90/17)^2}{9} (-2) vimage=238100/2899(2)v_{image} = \frac{2}{3} \frac{8100/289}{9} (-2) vimage=23900289(2)=1200289v_{image} = \frac{2}{3} \frac{900}{289} (-2) = -\frac{1200}{289} cm/s.

  4. Find the speed of the image: The speed of the image is the magnitude of its velocity: Speed =vimage=1200289=1200289= |v_{image}| = \left|-\frac{1200}{289}\right| = \frac{1200}{289} cm/s. Calculating the numerical value: 12002894.152\frac{1200}{289} \approx 4.152 cm/s.

    Since this value is not among the options A, B, or C, the correct option is (D) None of these.