Solveeit Logo

Question

Question: A spherical of radius R consists of a fluid of constant density and is in equilibrium under its own ...

A spherical of radius R consists of a fluid of constant density and is in equilibrium under its own gravity. If P(r), is pressure at r (r < R), then the correct option(s) are:
A. P (r = 0) = 0
B. P(r=3R/4)P(r=2R/3)=6380\dfrac{P(r=3R/4)}{P(r=2R/3)}=\dfrac{63}{80}
C. P(r=3R/5)P(r=2R/5)=1621\dfrac{P(r=3R/5)}{P(r=2R/5)}=\dfrac{16}{21}
D. P(r=R/2)P(r=R/3)=2027\dfrac{P(r=R/2)}{P(r=R/3)}=\dfrac{20}{27}

Explanation

Solution

Let g be the acceleration at the direction of the element at distance r from the centre O due to gravity. The difference in pressure (dp) on the two sides of the part in equilibrium is pressure by gravity per unit area.

Complete step by step answer:
So, we have
dp=ρgdr-dp=\rho gdr

Now,
Let the mass of the spherical body with radius r be m
So, now
We have
m=43πr2ρm=\dfrac{4}{3}\pi {{r}^{2}}\rho
Also,
g=Gmr2\Rightarrow g=\dfrac{Gm}{{{r}^{2}}}
g=Gr2×43πr3ρ\Rightarrow g=\dfrac{G}{{{r}^{2}}}\times \dfrac{4}{3}\pi {{r}^{3}}\rho
g=43Gπrρ\Rightarrow g=\dfrac{4}{3}G\pi r\rho
By using the above values,
dp=ρ(43πGρr)drdp=-\rho (\dfrac{4}{3}\pi G\rho r)dr
Integrating both side from P(=R) to P(=r)
We have
P(=R)P(=r)dp=P(=R)P(=r)ρ(43Gπρr)dr\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=\int\limits_{P(=R)}^{P(=r)}{\rho (-\dfrac{4}{3}G\pi \rho r)}dr
P(=R)P(=r)dp=43Gπρ2P(=R)P(=r)rdr\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=-\dfrac{4}{3}G\pi {{\rho }^{2}}\int\limits_{P(=R)}^{P(=r)}{r}dr
P(=R)P(=r)dp=43Gπρ2[r22]Rr\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=-\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{r}^{2}}}{2}]_{R}^{r}
P(=R)P(=r)dp=43Gπρ2[R2r22]\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]
P(r)P(R)=43Gπρ2[R2r22]\Rightarrow P(r)-P(R)=\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]
For,
P(R) = 0, we have P(r) = 43Gπρ2[R2r22]\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]
Now,
When r = 0, P(r) = 43Gπρ2[R22]\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}}{2}]
For, P(r=3R/4)andP(r=2R/3)P(r=3R/4)andP(r=2R/3)
We have
P(r=3R/4)P(r=2R/3)=6380\dfrac{P(r=3R/4)}{P(r=2R/3)}=\dfrac{63}{80}
Also, P(r=3R/5)P(r=3R/5) and P(r=2R/5)P(r=2R/5)
We have
P(r=3R/5)P(r=2R/5)=1621\dfrac{P(r=3R/5)}{P(r=2R/5)}=\dfrac{16}{21}
Now again
For,
P(r=R/2)P(r=R/2)and P(r=R/3)P(r=R/3)
P(r=R/2)P(r=R/3)=2732\dfrac{P(r=R/2)}{P(r=R/3)}=\dfrac{27}{32}
Therefore, Option – B and Option – C are the correct relations, i.e.,
B. P(r=3R/4)P(r=2R/3)=6380\dfrac{P(r=3R/4)}{P(r=2R/3)}=\dfrac{63}{80}
C. P(r=3R/5)P(r=2R/5)=1621\dfrac{P(r=3R/5)}{P(r=2R/5)}=\dfrac{16}{21}

Note: In many instances, one may misunderstand the formula of buoyancy for the formula of pressure. Keep in mind that the formula for pressure uses height, whereas, the one for buoyancy uses volume.