Solveeit Logo

Question

Physics Question on Capacitors and Capacitance

A spherical drop of capacitance 1 μ\muF is broken into eight drops of equal radius. Then, the capacitance of each small drop is

A

12μF\frac{1}{2} \mu F

B

14μF\frac{1}{4} \mu F

C

18μF\frac{1}{8} \mu F

D

8μF8 \,\mu F

Answer

12μF\frac{1}{2} \mu F

Explanation

Solution

Let RR and rr be the radii of bigger and each smaller drop respectively. 43πR3=8×43πr3\therefore \frac{4}{3} \pi R^{3} =8 \times \frac{4}{3} \pi r^{3} R=2r\Rightarrow R =2 r \dots(i) The capacitance of a smaller spherical drop is C=4πε0rC=4 \pi \varepsilon_{0} r\dots(ii) The capacitance of bigger drop is C=4πε0RC' = 4\pi \varepsilon_0 R =2×4πε0r(R=2r) = 2 \times 4\,\pi \varepsilon_0 r \,\,(\because R = 2r) =2C= 2C \, [from E (ii)] C=C2\therefore C = \frac{C'}{2} =12μF(C=1μF) = \frac{1}{2} \mu F \,\,(\because C' = 1\mu F)