Solveeit Logo

Question

Physics Question on Electric charges and fields

A spherical conducting shell of inner radius r1r_{1} and outer radius r2r_{2} has a charge QQ. A charge q-q is placed at the centre of the shell. The surface charge density on the inner and outer surfaces of the shell will be

A

q4πr21\frac{q}{4 \pi r_{2}^{1}} and Q4πr22\frac{Q}{4 \pi r_{2}^{2}}

B

q4πr21\frac{-q}{4 \pi r_{2}^{1}} and Q+q4πr22\frac{Q+q}{4 \pi r_{2}^{2}}

C

q4πr12\frac{q}{4 \pi r_{1}^{2}} and Qq4πr22\frac{Q-q}{4 \pi r_{2}^{2}}

D

00 and Qq4πr22\frac{Q-q}{4 \pi r_{2}^{2}}

Answer

q4πr12\frac{q}{4 \pi r_{1}^{2}} and Qq4πr22\frac{Q-q}{4 \pi r_{2}^{2}}

Explanation

Solution

Surface charge density
(σ)=Charge Surface area (\sigma)=\frac{\text{Charge}}{\text { Surface area }}
σinner =q4πr12\therefore \sigma_{\text {inner }}=\frac{-q}{4 \pi r_{1}^{2}}
and σouter =Qq4πr22 \sigma_{\text {outer }}=\frac{Q-q}{4 \pi r_{2}^{2}}