Solveeit Logo

Question

Question: A spherical bob of mass m and charge q suspended from a string of length l rotates about a fixed cha...

A spherical bob of mass m and charge q suspended from a string of length l rotates about a fixed charge identical to that of the bob (Fig.). The angle between the string and the vertical is q. Find the angular velocity of uniform rotation of the bob. It is given that kq2ml2=g\frac{kq^2}{ml^2}=g

A

gl(secθcosec3θ)\sqrt{\frac{g}{l}(sec\theta - cosec^3\theta)}

B

glsecθ\sqrt{\frac{g}{l}sec\theta}

C

glsecθ\sqrt{\frac{g}{l}sec\theta}

D

gl\sqrt{\frac{g}{l}}

Answer

gl(secθcosec3θ)\sqrt{\frac{g}{l}(sec\theta - cosec^3\theta)}

Explanation

Solution

To find the angular velocity of the bob, we analyze the forces acting on it: tension in the string, weight, and electrostatic force.

  1. Vertical Equilibrium: The vertical component of tension balances the weight:

    Tcosθ=mg    T=mgcosθT\cos\theta = mg \implies T = \frac{mg}{\cos\theta}
  2. Horizontal Force Balance: The horizontal component of tension and the electrostatic force provide the centripetal force:

    TsinθFe=mω2(lsinθ)T\sin\theta - F_e = m\omega^2 (l\sin\theta)
  3. Electrostatic Force: Given Fe=kq2(lsinθ)2F_e = \frac{kq^2}{(l\sin\theta)^2} and kq2ml2=g\frac{kq^2}{ml^2} = g, we get:

    Fe=mgsin2θF_e = \frac{mg}{\sin^2\theta}
  4. Substitute and Solve: Substituting TT and FeF_e into the horizontal force balance equation:

    mgtanθmgsin2θ=mω2lsinθmg\tan\theta - \frac{mg}{\sin^2\theta} = m\omega^2 l\sin\theta

    Dividing by mlsinθml\sin\theta:

    ω2=glsinθ(tanθ1sin2θ)\omega^2 = \frac{g}{l\sin\theta} \left(\tan\theta - \frac{1}{\sin^2\theta}\right)
  5. Simplify: Expressing in terms of secθ\sec\theta and cscθ\csc\theta:

    ω2=gl(secθcsc3θ)\omega^2 = \frac{g}{l} (\sec\theta - \csc^3\theta)

    Thus,

    ω=gl(secθcsc3θ)\omega = \sqrt{\frac{g}{l} (\sec\theta - \csc^3\theta)}