Solveeit Logo

Question

Mathematics Question on Application of derivatives

A spherical balloon is filled with 4500π4500\,\pi cubic meters of helium gas. If a leak in the balloon causes the gas to escape at the rate of 72π72\,\pi cubic meters per minute, then the rate (in meters per minute) at which the radius of the balloon decreases 4949 minutes after the leakage began is

A

97\frac{9}{7}

B

79\frac{7}{9}

C

29\frac{2}{9}

D

92\frac{9}{2}

Answer

29\frac{2}{9}

Explanation

Solution

V=43πr34500π=4πr33V = \frac{4}{3}\pi r^{3}\quad\quad4500 \pi = \frac{4\pi r^{3}}{3} dVdt=4πr2(drdt)45??25??3=r3\frac{dV}{dt} = 4\pi r^{2} \left(\frac{dr}{dt}\right)\quad\quad45 ??25 ??3 = r^{3} r=15mr = 15\, m after 4949 min =(450049.72)π=972πm3= \left(4500 - 49.72\right)\pi = 972\, \pi\,m^{3} 972π=43πr3972\,\pi = \frac{4}{3} \pi r^{3} r3=3??43=3??35r^{3} = 3??43 = 3??3^{5} r=9r = 9 72π=4π??9??9(drdt)72\, \pi = 4\pi ??9 ??9 \left(\frac{dr}{dt}\right) drdt=(29)\frac{dr}{dt} = \left(\frac{2}{9}\right)