Solveeit Logo

Question

Mathematics Question on Application of derivatives

A spherical balloon is being inflated at the rate of 35cc35\, cc per minute, When its radius is 7cm7\, cm, its surface area increases at the rate of

A

10 s cm/min

B

15 s cm/min

C

20 s cm/min

D

25 s cm/min

Answer

10 s cm/min

Explanation

Solution

Given , dVdt=35,\frac{dV}{dt} = 35 ,
where VV is volume of spherical balloon.
Also, V=43πr3V = \frac{4}{3} \pi r^3
ddt(43πr3)=35\Rightarrow\frac{d}{dt} \left(\frac{4}{3} \pi r^{3}\right) = 35
43π×3r2drdt=35\Rightarrow \frac{4}{3} \pi \times3r^{2} \frac{dr}{dt} = 35
drdt=35×34π×3r2\Rightarrow \frac{dr}{dt} = \frac{35 \times3}{4\pi \times3r^{2}}
Let SS be surface area of sphere then S=4πr2S = 4\pi r^2
Taking derivatives w.r.t. t't'
dSdt=8π×rdrdt=8π×r×35×34π×3r2\Rightarrow \frac{dS}{dt} = 8\pi \times r \frac{dr}{dt} = 8\pi \times r\times \frac{35 \times3}{4\pi\times3r^{2}}
Substituter r = 7
dSdt=2×35×33×7=10cm2/min\frac{dS}{dt} = \frac{2\times 35 \times 3}{3\times 7} = 10 cm^{2}/ min
=2logea= 2\log_{e}a