Solveeit Logo

Question

Physics Question on Gauss's, Green's and Stokes’ theorems

A spherical ball of radius 1×104m1 \times 10^{-4} \, \text{m} and density 105kg/m310^5 \, \text{kg/m}^3 falls freely under gravity through a distance hh before entering a tank of water. If after entering in water the velocity of the ball does not change, then the value of hh is approximately: (The coefficient of viscosity of water is 9.8×106N s/m2)\text{(The coefficient of viscosity of water is } 9.8 \times 10^{-6} \, \text{N s/m}^2 \text{)}

A

2296 m

B

2249 m

C

2518 m

D

2396 m

Answer

2518 m

Explanation

Solution

The terminal velocity VTV_T of the spherical ball in water is given by Stokes' law:

VT=2gR29η(ρBρL),V_T = \frac{2gR^2}{9\eta} (\rho_B - \rho_L),

where:

  • R=1×104mR = 1 \times 10^{-4} \, \text{m} (radius of the ball),
  • ρB=105kg/m3\rho_B = 10^5 \, \text{kg/m}^3 (density of the ball),
  • ρL=103kg/m3\rho_L = 10^3 \, \text{kg/m}^3 (density of water),
  • η=9.8×106\eta = 9.8 \times 10^{-6} , PasPa·s (viscosity of water),
  • g=9.8m/s2g = 9.8 \, \text{m/s}^2 (acceleration due to gravity).

Substitute the values into the formula:

VT=29.8(1×104)299.8×106(105103).V_T = \frac{2 \cdot 9.8 \cdot (1 \times 10^{-4})^2}{9 \cdot 9.8 \times 10^{-6}} (10^5 - 10^3).

Simplify step-by-step:

VT=2910(104)29.8×106(105103),V_T = \frac{2}{9} \cdot \frac{10 \cdot (10^{-4})^2}{9.8 \times 10^{-6}} \cdot (10^5 - 10^3),

VT=29101089.8×106(105103),V_T = \frac{2}{9} \cdot \frac{10 \cdot 10^{-8}}{9.8 \times 10^{-6}} \cdot (10^5 - 10^3),

VT=29109.8102=224.5m/s.V_T = \frac{2}{9} \cdot \frac{10}{9.8} \cdot 10^2 = 224.5 \, \text{m/s}.

When the ball falls freely from a height hh, its velocity VV is given by:

V=2gh.V = \sqrt{2gh}.

Rearranging for hh:

h=V22g.h = \frac{V^2}{2g}.

Substitute VT=224.5m/sV_T = 224.5 \, \text{m/s} and g=9.8m/s2g = 9.8 \, \text{m/s}^2:

h=(224.5)229.8.h = \frac{(224.5)^2}{2 \cdot 9.8}.

Simplify:

h=50402.2519.62571m.h = \frac{50402.25}{19.6} \approx 2571 \, \text{m}.

Thus, the height hh is approximately:

2518m.\boxed{2518 \, \text{m}}.