Solveeit Logo

Question

Question: A spherical ball of mass \(m_{1}\)collides head on with another ball of mass \(m_{2}\)at read. The c...

A spherical ball of mass m1m_{1}collides head on with another ball of mass m2m_{2}at read. The collision is elastic. The fraction of kinetic energy lost by m1m_{1}is:

A

4m1m2(m1+m2)2\frac{4m_{1}m_{2}}{(m_{1} + m_{2})^{2}}

B

m1m1+m2\frac{m_{1}}{m_{1} + m_{2}}

C

m2m1+m2\frac{m_{2}}{m_{1} + m_{2}}

D

m1m2(m1+m2)\frac{m_{1}m_{2}}{(m_{1} + m_{2})}

Answer

4m1m2(m1+m2)2\frac{4m_{1}m_{2}}{(m_{1} + m_{2})^{2}}

Explanation

Solution

According to momentum conservation, we get

m1v1i=m1v1f+m2v2fm_{1}v_{1i} = m_{1}v_{1f} + m_{2}v_{2f} ……(i)

Where v1iv_{1i}is the initial velocity of spherical ball of mass m1m_{1}before collision and v1fandv2fv_{1f}andv_{2f}are the final velocities of the balls of masses m1m_{1}and m2m_{2}after collision.

According to kinetic energy conservation, we get

12m1v1i2=12m1v12+12m2v22f\frac{1}{2}m_{1}v_{1i}^{2} = \frac{1}{2}m_{1}v_{1}^{2} + \frac{1}{2}m_{2}v_{2}^{2}f

m1v1i2=m1v1f2+m2v2f2m_{1}v_{1i}^{2} = m_{1}v_{1f}^{2} + m_{2}v_{2f}^{2} …..(ii)

Form Egs. (i) and (ii), it follows that

m1v1i(v2fv1i)=m1v1(v2fv1f)m_{1}v_{1i}(v_{2f} - v_{1i}) = m_{1}v_{1}(v_{2f} - v_{1f})

Or v2f(v1iv1f)=v12iv1f2=(v1iv1f)(v1i+v1f)v_{2f}(v_{1i} - v_{1f}) = v_{1}^{2}i - v_{1f}^{2} = (v_{1i} - v_{1f})(v_{1i} + v_{1f})

v2f=v1i+v1f\therefore v_{2f} = v_{1i} + v_{1f}

Substituting this in Eq. (i) we get

v1f=(m1m2)m1+m2v1iv_{1f} = \frac{(m_{1} - m_{2})}{m_{1} + m_{2}}v_{1i}

The initial kinetic energy of the mass m1m_{1}is

k1i=12m1v1i2k_{1i} = \frac{1}{2}m_{1}v_{1i}^{2}

The final kinetic energy of the mass m1m_{1}is

k1f=12m1v1f2=12m1(m1m2m1+m2)2v1i2k_{1f} = \frac{1}{2}m_{1}v_{1f}^{2} = \frac{1}{2}m_{1}\left( \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \right)^{2}v_{1i}^{2} (Using (iii))

The fraction of kinetic energy lost by m1m_{1}is

f=k1ik1fk1if = \frac{k_{1i} - k_{1f}}{k_{1i}}

=12m1v1i212m1(m1m2m1+m2)2v1i212m1v1i2= \frac{\frac{1}{2}m_{1}v_{1i}^{2} - \frac{1}{2}m_{1}\left( \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \right)^{2}v_{1i}^{2}}{\frac{1}{2}m_{1}v_{1i}^{2}}

=1(m1m2m1+m2)2=4m1m2(m1+m2)2= 1 - \left( \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \right)^{2} = \frac{4m_{1}m_{2}}{(m_{1} + m_{2})^{2}}