Solveeit Logo

Question

Physics Question on work, energy and power

A sphere PP of mass m and velocity vi\vec{v_i}- undergoes an oblique and perfectly elastic collision with an identical sphere QQ initially at rest. The angle θ\theta between the velocities of the spheres after the collision shall be

A

00

B

45?45^?

C

90?90^?

D

180?180^?

Answer

90?90^?

Explanation

Solution

According to law of conservation of linear momentum, we get
mvi+m×0=mvPf+mvQfm \vec{v}_{i}+m \times 0=m \vec{v}_{P f}+m \vec{v}_{Q f}
where vpf\vec{v}_{p f} and vQf\vec{v}_{Q f} are the final velocities of spheres PP and QQ after collision respectively.
vi=vPf+vQf\vec{v}_{i}=\vec{v}_{P f}+\vec{v}_{Q f}
(vivi)=(vPf+vQf)(vPf+vQf)\left(\vec{v}_{i} \cdot \vec{v}_{i}\right)=\left(\vec{v}_{P f}+\vec{v}_{Q f}\right) \cdot\left(\vec{v}_{P f}+\vec{v}_{Q f}\right)
=vPfvPf+vQfvQf+2vPfvQf=\vec{v}_{P f} \cdot \vec{v}_{P f}+\vec{v}_{Q f} \cdot \vec{v}_{Q f}+2 \vec{v}_{P f} \cdot \vec{v}_{Q f}
or vi2=vPf2+vQf2+2vPfvQfcosθv_{i}^{2}=v_{P f}^{2}+v_{Q f}^{2}+2 v_{P f} v_{Q f} \cos \theta ...(i)
According to conservation of kinetic energy, we get
12mvi2=12mvpf2+12mvQf2\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m v_{p f}^{2}+\frac{1}{2} m v_{Q f}^{2}
vi2=vPf2+vQf2\Rightarrow v_{i}^{2}=v_{P f}^{2}+v_{Q f}^{2} ...(ii)
Comparing (i)(i) and (ii)(ii), we get
2vpfvqfcosθ=02 v_{p f} v_{q f} \cos \theta=0
cosθ=0\Rightarrow \cos \theta=0
or θ=90\theta=90^{\circ}