Solveeit Logo

Question

Physics Question on Fluid Mechanics

A sphere of relative density σ\sigma and diameter DD has a concentric cavity of diameter dd. The ratio of Dd\frac{D}{d}, if it just floats on water in a tank, is:

A

(σσ1)13\left( \frac{\sigma}{\sigma - 1} \right)^{\frac{1}{3}}

B

(σ+1σ1)13\left( \frac{\sigma + 1}{\sigma - 1} \right)^{\frac{1}{3}}

C

(σ1σ)13\left( \frac{\sigma - 1}{\sigma} \right)^{\frac{1}{3}}

D

(σ2σ+2)13\left( \frac{\sigma - 2}{\sigma + 2} \right)^{\frac{1}{3}}

Answer

(σσ1)13\left( \frac{\sigma}{\sigma - 1} \right)^{\frac{1}{3}}

Explanation

Solution

Step 1: Weight of the sphere The weight of the sphere w is given by:

w=43π(D3d38)σg,w = \frac{4}{3} \pi \left( D^3 - \frac{d^3}{8} \right) \sigma g,

where:

  • D3d3D^3 - d^3 accounts for the volume of the sphere minus the cavity,
  • σ\sigma is the relative density,
  • gg is the acceleration due to gravity.

Step 2: Buoyant force The buoyant force FbF_b is given by:

Fb=43π(D38)g,F_b = \frac{4}{3} \pi \left( \frac{D^3}{8} \right) g,

where D38\frac{D^3}{8} is the volume of displaced water.

Step 3: Equilibrium condition For the sphere to just float, the weight equals the buoyant force:

w=Fb.w = F_b.

Substitute expressions for ww and FbF_b:

43π(D3d38)σg=43π(D38)g.\frac{4}{3} \pi \left( D^3 - \frac{d^3}{8} \right) \sigma g = \frac{4}{3} \pi \left( \frac{D^3}{8} \right) g.

Cancel common terms:

(D3d3)σ=D3.\left( D^3 - d^3 \right) \sigma = D^3.

Simplify:

D3d3=D3σ.D^3 - d^3 = \frac{D^3}{\sigma}.

Step 4: Solve for dD\frac{d}{D} Divide through by D3D^3:

1d3D3=1σ.1 - \frac{d^3}{D^3} = \frac{1}{\sigma}.

Rearrange:

d3D3=11σ.\frac{d^3}{D^3} = 1 - \frac{1}{\sigma}.

Take the cube root:

dD=(11σ)13.\frac{d}{D} = \left( 1 - \frac{1}{\sigma} \right)^{\frac{1}{3}}.

Invert to find Dd\frac{D}{d}:

Dd=(σσ1)13.\frac{D}{d} = \left( \frac{\sigma}{\sigma - 1} \right)^{\frac{1}{3}}.

Final Answer: Dd=(σσ1)13.\frac{D}{d} = \left( \frac{\sigma}{\sigma - 1} \right)^{\frac{1}{3}}.