Solveeit Logo

Question

Physics Question on Electric Field

A sphere of radius R has a volume density of charge ?=kr? = kr, where r is the distance from the centre of the sphere and k is constant. The magnitude of the electric field which exists at the sur ace o the sphere is given by (e0e_0 = permittivity of the free space)

A

4πkR43ε0\frac{4\pi kR^{4}}{3\varepsilon_{0}}

B

kR3ε0\frac{kR}{3\varepsilon_{0}}

C

4πkRε0\frac{4\pi kR}{\varepsilon_{0}}

D

kR24ε0\frac{kR^{2}}{4\varepsilon_{0}}

Answer

kR24ε0\frac{kR^{2}}{4\varepsilon_{0}}

Explanation

Solution

Given, ρ=Kr\rho=K \cdot r
By Gauss's theorem
E(4πr2)=ρ×4πr2drε0E\left(4 \pi r^{2}\right) =\frac{\int \rho \times 4 \pi r^{2} d r}{\varepsilon_{0}}
=Kr×4πr2drε0=\frac{\int K r \times 4 \pi r^{2} d r}{\varepsilon_{0}}
E=Kr24ε0\Rightarrow E =\frac{K r^{2}}{4 \varepsilon_{0}}
Here r=R r =R
So, E=KR24ε0E=\frac{K R^{2}}{4 \varepsilon_{0}}