Solveeit Logo

Question

Physics Question on work, energy and power

A sphere of mass mm moving with constant velocity uu , collides with another stationary sphere of same mass. If ee is the coefficient of restitution, the ratio of the final velocities of the first and second spheres is

A

1+e1e\frac{1+e}{1-e}

B

1e1+e\frac{1-e}{1+e}

C

e1e\frac{e}{1-e}

D

1+ee\frac{1+e}{e}

Answer

1e1+e\frac{1-e}{1+e}

Explanation

Solution

Let v1,v2v_{1}, v_{2} be the final velocities of the two spheres. Applying the law of conservation of linear momentum mu=m(v1+v2)m u=m\left(v_{1}+v_{2}\right) or v1+v2=uv_{1}+v_{2}=u \ldots (i) Again the coefficient of restitution is given by e=v2v1ue=\frac{v_{2}-v_{1}}{u} or v1+v2=uv_{1}+v_{2}=u \ldots (ii) Solving Eqs. (i) and (ii), we get v1=u2(1e),v2=u2(1+e)v_{1}=\frac{u}{2}(1-e), v_{2}=\frac{u}{2}(1+e) Therefore, v1v2=(1e1+e)\frac{v_{1}}{v_{2}}=\left(\frac{1-e}{1+e}\right)