Solveeit Logo

Question

Physics Question on Elastic and inelastic collisions

A sphere of mass m moving with constant velocity μ\mu , collides with another stationary sphere of same mass. If e is the coefficient of restitution, the ratio of the final velocities of the first and second spheres is

A

1+e1e\frac{1+e}{1-e}

B

1e1+e\frac{1-e}{1+e}

C

e1e\frac{e}{1-e}

D

1+ee\frac{1+e}{e}

Answer

1e1+e\frac{1-e}{1+e}

Explanation

Solution

Let v1,v2{{v}_{1}},{{v}_{2}} be the final velocities of the two spheres. Applying the law of conservation of linear momentum mu=m(v1+v2)mu=m({{v}_{1}}+{{v}_{2}}) or v1+v2=u{{v}_{1}}+{{v}_{2}}=u ?(i) Again the coefficient of restitution is given by e=v2v1ue=\frac{{{v}_{2}}-{{v}_{1}}}{u} or v2v1=eu{{v}_{2}}-{{v}_{1}}=eu ?(ii) Solving Eqs. (i) and (ii), we get v1=u2(1e),v2=u2(1+e){{v}_{1}}=\frac{u}{2}(1-e),{{v}_{2}}=\frac{u}{2}(1+e) Therefore, v1v2=(1e1+e)\frac{{{v}_{1}}}{{{v}_{2}}}=\left( \frac{1-e}{1+e} \right)