Solveeit Logo

Question

Question: A sphere of mass M kg is suspended by a metal wire of length L and diameter d. When in equilibrium t...

A sphere of mass M kg is suspended by a metal wire of length L and diameter d. When in equilibrium there is a gap of Dl between the sphere and the floor. The sphere is gently pushed aside so that it makes an angle q with the vertical. Find qmax so that sphere fails to rub the Floor. Young's modulus of the wire is Y –

A

sin–1(1Yπd2Δl8MgL)\left( 1–\frac{Y\pi d^{2}\Delta\mathcal{l}}{8MgL} \right)

B

tan–1 (1Yπd2Δl8MgL)\left( 1–\frac{Y\pi d^{2}\Delta\mathcal{l}}{8MgL} \right)

C

cos–1(1Yπd2Δl8MgL)\left( 1–\frac{Y\pi d^{2}\Delta\mathcal{l}}{8MgL} \right)

D

None

Answer

cos–1(1Yπd2Δl8MgL)\left( 1–\frac{Y\pi d^{2}\Delta\mathcal{l}}{8MgL} \right)

Explanation

Solution

Y = FlAΔl\frac{F\mathcal{l}}{A\Delta\mathcal{l}} = 2Mg(1cosθ)Lπd24Δl\frac{2Mg(1–\cos\theta)L}{\pi\frac{d^{2}}{4}\Delta\mathcal{l}}

[QMv22\frac{Mv^{2}}{2} = Mgl(1 – cos q)

Ž Mv2l\frac{Mv^{2}}{\mathcal{l}} = 2Mg (1 – cos q)]

1 – cos q = Yπd2Δl8Mgl\frac{Y\pi d^{2}\Delta\mathcal{l}}{8Mg\mathcal{l}} Ž cos q = 1 – Yπd2Δl8Mgl\frac{Y\pi d^{2}\Delta\mathcal{l}}{8Mg\mathcal{l}}