Solveeit Logo

Question

Question: A sphere of mass M kg is suspended by a metal wire of length L and diameter d. When in equilibrium, ...

A sphere of mass M kg is suspended by a metal wire of length L and diameter d. When in equilibrium, there is a gap of ∆l between the sphere and the floor. The sphere is gently pushed aside so that it makes an angle θ with the vertical. Find θmax so that sphere fails to rub the Floor. Youngs modulus of

the wire is Y.

A

sin-1(1Yπd2Δl8MgL)\left( 1 - \frac{Y\pi d^{2}\Delta l}{8MgL} \right)

B

tan-1(1Yπd2Δl8MgL)\left( 1 - \frac{Y\pi d^{2}\Delta l}{8MgL} \right)

C

cos-1(1Yπd2Δl8MgL)\left( 1 - \frac{Y\pi d^{2}\Delta l}{8MgL} \right)

D

None of these

Answer

cos-1(1Yπd2Δl8MgL)\left( 1 - \frac{Y\pi d^{2}\Delta l}{8MgL} \right)

Explanation

Solution

Y = FlAΔl=2Mg(1cosθ)Δlπd24Δl\frac{Fl}{A\Delta l} = \frac{2Mg\left( 1 - \cos\theta \right)\Delta l}{\pi\frac{d^{2}}{4}\Delta l}

or 1 – cos θ = Yπd2Δl8Mgl\frac{Y\pi d^{2}\Delta l}{8Mgl} or cos θ = 1 - Yπd2Δl8Mgl\frac{Y\pi d^{2}\Delta l}{8Mgl}

mv22\frac{mv^{2}}{2} = mgl(1 – cos θ)

or mv2l\frac{mv^{2}}{l} = 2 mg (1 – cos θ)

θ = cos1(1Yπd2Δl8Mgl)\cos^{- 1}\left( 1 - \frac{Y\pi d^{2}\Delta l}{8Mgl} \right)